{"title":"Improved dose compensation model owing to short irradiation interruption time for hypoxic tumor using a microdosimetric kinetic model.","authors":"Daisuke Kawahara","doi":"10.5603/rpor.101098","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The objective was to enhance the biological compensation factor related to irradiation interruption in a short time (short irradiation interruption) in hypoxic tumors using a refined microdosimetric kinetic model (MKM) for photon radiation therapy.</p><p><strong>Materials and methods: </strong>The biological dose differences were calculated for CHO-K1 cells exposed to a photon beam, considering interruptions of (τ) of 0-120 min and pO<sub>2</sub> at oxygen levels of 0.075-160 mm Hg. The interrupted dose fraction (IDF) was defined as the percentage ratio of the dose delivered before short irradiation interruption to the total dose, which ranged from 10-90%. The compensated dose was calculated based on an IDF of 10-90% for a dose of 2-8 Gy and oxygen levels of 0.075-160 mm Hg.</p><p><strong>Results: </strong>The Δ with and without short irradiation interruption was more pronounced with a higher dose and increased pO<sub>2</sub>. It exceeded 3% between IDF of 50% and either 10% or 90% and occurred more than τ = 50 min at 0.075 mm Hg, τ = 20 min at 3 mm Hg, τ = 20 min at 8 mm Hg, τ = 20 min at 15 mm Hg, τ = 20 min at 38 mm Hg, and τ = 20 min at 160 mm Hg. The dose compensation factor was greater at higher IDF rates.</p><p><strong>Conclusion: </strong>The biological dose decreased with longer interruption times and higher oxygen concentrations. The improved model can compensate for the biological doses at various oxygen concentrations.</p><p><strong>Advances in knowledge: </strong>The current study improved the dose compensation method for the decrease in the biological effect owing to short irradiation interruption by considering the oxygen concentration.</p>","PeriodicalId":47283,"journal":{"name":"Reports of Practical Oncology and Radiotherapy","volume":"29 3","pages":"271-279"},"PeriodicalIF":1.2000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11321781/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports of Practical Oncology and Radiotherapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5603/rpor.101098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The objective was to enhance the biological compensation factor related to irradiation interruption in a short time (short irradiation interruption) in hypoxic tumors using a refined microdosimetric kinetic model (MKM) for photon radiation therapy.
Materials and methods: The biological dose differences were calculated for CHO-K1 cells exposed to a photon beam, considering interruptions of (τ) of 0-120 min and pO2 at oxygen levels of 0.075-160 mm Hg. The interrupted dose fraction (IDF) was defined as the percentage ratio of the dose delivered before short irradiation interruption to the total dose, which ranged from 10-90%. The compensated dose was calculated based on an IDF of 10-90% for a dose of 2-8 Gy and oxygen levels of 0.075-160 mm Hg.
Results: The Δ with and without short irradiation interruption was more pronounced with a higher dose and increased pO2. It exceeded 3% between IDF of 50% and either 10% or 90% and occurred more than τ = 50 min at 0.075 mm Hg, τ = 20 min at 3 mm Hg, τ = 20 min at 8 mm Hg, τ = 20 min at 15 mm Hg, τ = 20 min at 38 mm Hg, and τ = 20 min at 160 mm Hg. The dose compensation factor was greater at higher IDF rates.
Conclusion: The biological dose decreased with longer interruption times and higher oxygen concentrations. The improved model can compensate for the biological doses at various oxygen concentrations.
Advances in knowledge: The current study improved the dose compensation method for the decrease in the biological effect owing to short irradiation interruption by considering the oxygen concentration.
期刊介绍:
Reports of Practical Oncology and Radiotherapy is an interdisciplinary bimonthly journal, publishing original contributions in clinical oncology and radiotherapy, as well as in radiotherapy physics, techniques and radiotherapy equipment. Reports of Practical Oncology and Radiotherapy is a journal of the Polish Society of Radiation Oncology, the Czech Society of Radiation Oncology, the Hungarian Society for Radiation Oncology, the Slovenian Society for Radiotherapy and Oncology, the Polish Study Group of Head and Neck Cancer, the Guild of Bulgarian Radiotherapists and the Greater Poland Cancer Centre, affiliated with the Spanish Society of Radiotherapy and Oncology, the Italian Association of Radiotherapy and the Portuguese Society of Radiotherapy - Oncology.