Zbyněk Pitra, Jan Koza, Jiří Tumpach, Martin Holeňa
{"title":"Landscape Analysis for Surrogate Models in the Evolutionary Black-Box Context.","authors":"Zbyněk Pitra, Jan Koza, Jiří Tumpach, Martin Holeňa","doi":"10.1162/evco_a_00357","DOIUrl":null,"url":null,"abstract":"<p><p>Surrogate modeling has become a valuable technique for black-box optimization tasks with expensive evaluation of the objective function. In this paper, we investigate the relationships between the predictive accuracy of surrogate models, their settings, and features of the black-box function landscape during evolutionary optimization by the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) state-of-the-art optimizer for expensive continuous black-box tasks. This study aims to establish the foundation for specific rules and automated methods for selecting and tuning surrogate models by exploring relationships between landscape features and model errors, focusing on the behavior of a specific model within each generation in contrast to selecting a specific algorithm at the outset. We perform a feature analysis process, identifying a significant number of non-robust features and clustering similar landscape features, resulting in the selection of 14 features out of 384, varying with input data selection methods. Our analysis explores the error dependencies of four models across 39 settings, utilizing three methods for input data selection, drawn from surrogate-assisted CMA-ES runs on noiseless benchmarks within the Comparing Continuous Optimizers framework.</p>","PeriodicalId":50470,"journal":{"name":"Evolutionary Computation","volume":" ","pages":"1-29"},"PeriodicalIF":4.6000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/evco_a_00357","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Surrogate modeling has become a valuable technique for black-box optimization tasks with expensive evaluation of the objective function. In this paper, we investigate the relationships between the predictive accuracy of surrogate models, their settings, and features of the black-box function landscape during evolutionary optimization by the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) state-of-the-art optimizer for expensive continuous black-box tasks. This study aims to establish the foundation for specific rules and automated methods for selecting and tuning surrogate models by exploring relationships between landscape features and model errors, focusing on the behavior of a specific model within each generation in contrast to selecting a specific algorithm at the outset. We perform a feature analysis process, identifying a significant number of non-robust features and clustering similar landscape features, resulting in the selection of 14 features out of 384, varying with input data selection methods. Our analysis explores the error dependencies of four models across 39 settings, utilizing three methods for input data selection, drawn from surrogate-assisted CMA-ES runs on noiseless benchmarks within the Comparing Continuous Optimizers framework.
期刊介绍:
Evolutionary Computation is a leading journal in its field. It provides an international forum for facilitating and enhancing the exchange of information among researchers involved in both the theoretical and practical aspects of computational systems drawing their inspiration from nature, with particular emphasis on evolutionary models of computation such as genetic algorithms, evolutionary strategies, classifier systems, evolutionary programming, and genetic programming. It welcomes articles from related fields such as swarm intelligence (e.g. Ant Colony Optimization and Particle Swarm Optimization), and other nature-inspired computation paradigms (e.g. Artificial Immune Systems). As well as publishing articles describing theoretical and/or experimental work, the journal also welcomes application-focused papers describing breakthrough results in an application domain or methodological papers where the specificities of the real-world problem led to significant algorithmic improvements that could possibly be generalized to other areas.