{"title":"Electrodermal lability and sensorimotor preparation: effects on reaction time, contingent negative variation, and heart rate.","authors":"Heinz Zimmer, Fabian Richter","doi":"10.3758/s13415-024-01206-8","DOIUrl":null,"url":null,"abstract":"<p><p>Electrodermal lability is a trait-like measure of spontaneous sympathetic resting activity. In the present study, we addressed whether interindividual differences in this lability have an impact on the reaction time (RT) and on two physiological indicators of a goal-oriented sensorimotor preparation in a long-running, forewarned RT task (S1-S2 paradigm). The two indicators were the brain's contingent negative variation (CNV) and a heart rate deceleration (HRD). The interindividual differences were determined by counting spontaneous skin conductance fluctuations during a 5-min resting phase and dividing the subjects into two groups: individuals below (stable) and above (labile) the median of these fluctuations. In the task, labile individuals had a shorter RT compared with stable individuals and showed in the final phase of preparation in both physiological indicators the stronger response. Thus, lability-dependent effects in forewarned RT tasks cannot be explained by differences in stimulus-driven or passively controlled processes alone. Rather, goal-oriented, deliberately controlled processes that serve to adequately prepare for an imperative stimulus-the S2 in our paradigm-also must be considered to explain them. Labile individuals not only react faster than stable ones but also intentionally prepare themselves more appropriately for the imperative stimulus. A norepinephrine hypothesis focusing on the tonic activity of the locus coeruleus (LC) is proposed as an explanation for these and other lability-dependent effects. The frequency of spontaneous electrodermal fluctuations at rest may represent a peripheral, noninvasive, and easily measurable indicator of the baseline LC activity during wakefulness.</p>","PeriodicalId":50672,"journal":{"name":"Cognitive Affective & Behavioral Neuroscience","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11525398/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Affective & Behavioral Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3758/s13415-024-01206-8","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Electrodermal lability is a trait-like measure of spontaneous sympathetic resting activity. In the present study, we addressed whether interindividual differences in this lability have an impact on the reaction time (RT) and on two physiological indicators of a goal-oriented sensorimotor preparation in a long-running, forewarned RT task (S1-S2 paradigm). The two indicators were the brain's contingent negative variation (CNV) and a heart rate deceleration (HRD). The interindividual differences were determined by counting spontaneous skin conductance fluctuations during a 5-min resting phase and dividing the subjects into two groups: individuals below (stable) and above (labile) the median of these fluctuations. In the task, labile individuals had a shorter RT compared with stable individuals and showed in the final phase of preparation in both physiological indicators the stronger response. Thus, lability-dependent effects in forewarned RT tasks cannot be explained by differences in stimulus-driven or passively controlled processes alone. Rather, goal-oriented, deliberately controlled processes that serve to adequately prepare for an imperative stimulus-the S2 in our paradigm-also must be considered to explain them. Labile individuals not only react faster than stable ones but also intentionally prepare themselves more appropriately for the imperative stimulus. A norepinephrine hypothesis focusing on the tonic activity of the locus coeruleus (LC) is proposed as an explanation for these and other lability-dependent effects. The frequency of spontaneous electrodermal fluctuations at rest may represent a peripheral, noninvasive, and easily measurable indicator of the baseline LC activity during wakefulness.
期刊介绍:
Cognitive, Affective, & Behavioral Neuroscience (CABN) offers theoretical, review, and primary research articles on behavior and brain processes in humans. Coverage includes normal function as well as patients with injuries or processes that influence brain function: neurological disorders, including both healthy and disordered aging; and psychiatric disorders such as schizophrenia and depression. CABN is the leading vehicle for strongly psychologically motivated studies of brain–behavior relationships, through the presentation of papers that integrate psychological theory and the conduct and interpretation of the neuroscientific data. The range of topics includes perception, attention, memory, language, problem solving, reasoning, and decision-making; emotional processes, motivation, reward prediction, and affective states; and individual differences in relevant domains, including personality. Cognitive, Affective, & Behavioral Neuroscience is a publication of the Psychonomic Society.