{"title":"Nonlinear dynamic transfer partial least squares for domain adaptive regression","authors":"","doi":"10.1016/j.isatra.2024.08.002","DOIUrl":null,"url":null,"abstract":"<div><p>Aiming to address soft sensing model degradation under changing working conditions, and to accommodate dynamic, nonlinear, and multimodal data characteristics, this paper proposes a nonlinear dynamic transfer soft sensor algorithm. The approach leverages time-delay data augmentation to capture dynamics and projects the augmented data into a latent space for constructing a nonlinear regression model. Two regular terms, distribution alignment regularity and first-order difference regularity, are introduced during data projection to address data distribution disparities. Laplace regularity is incorporated into the nonlinear regression model to ensure geometric structure preservation. The final optimization objective is formulated within the framework of partial least squares, and hyperparameters are determined using Bayesian optimization. The effectiveness of the proposed algorithm is demonstrated through experiments on three public datasets.</p></div>","PeriodicalId":14660,"journal":{"name":"ISA transactions","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019057824003744","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Aiming to address soft sensing model degradation under changing working conditions, and to accommodate dynamic, nonlinear, and multimodal data characteristics, this paper proposes a nonlinear dynamic transfer soft sensor algorithm. The approach leverages time-delay data augmentation to capture dynamics and projects the augmented data into a latent space for constructing a nonlinear regression model. Two regular terms, distribution alignment regularity and first-order difference regularity, are introduced during data projection to address data distribution disparities. Laplace regularity is incorporated into the nonlinear regression model to ensure geometric structure preservation. The final optimization objective is formulated within the framework of partial least squares, and hyperparameters are determined using Bayesian optimization. The effectiveness of the proposed algorithm is demonstrated through experiments on three public datasets.
期刊介绍:
ISA Transactions serves as a platform for showcasing advancements in measurement and automation, catering to both industrial practitioners and applied researchers. It covers a wide array of topics within measurement, including sensors, signal processing, data analysis, and fault detection, supported by techniques such as artificial intelligence and communication systems. Automation topics encompass control strategies, modelling, system reliability, and maintenance, alongside optimization and human-machine interaction. The journal targets research and development professionals in control systems, process instrumentation, and automation from academia and industry.