Peter C Van Dyken, Michael MacKinley, Ali R Khan, Lena Palaniyappan
{"title":"Cortical Network Disruption Is Minimal in Early Stages of Psychosis.","authors":"Peter C Van Dyken, Michael MacKinley, Ali R Khan, Lena Palaniyappan","doi":"10.1093/schizbullopen/sgae010","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and hypothesis: </strong>Schizophrenia is associated with white matter disruption and topological reorganization of cortical connectivity but the trajectory of these changes, from the first psychotic episode to established illness, is poorly understood. Current studies in first-episode psychosis (FEP) patients using diffusion magnetic resonance imaging (dMRI) suggest such disruption may be detectable at the onset of psychosis, but specific results vary widely, and few reports have contextualized their findings with direct comparison to young adults with established illness.</p><p><strong>Study design: </strong>Diffusion and T1-weighted 7T MR scans were obtained from <i>N</i> = 112 individuals (58 with untreated FEP, 17 with established schizophrenia, 37 healthy controls) recruited from London, Ontario. Voxel- and network-based analyses were used to detect changes in diffusion microstructural parameters. Graph theory metrics were used to probe changes in the cortical network hierarchy and to assess the vulnerability of hub regions to disruption. The analysis was replicated with <i>N</i> = 111 (57 patients, 54 controls) from the Human Connectome Project-Early Psychosis (HCP-EP) dataset.</p><p><strong>Study results: </strong>Widespread microstructural changes were found in people with established illness, but changes in FEP patients were minimal. Unlike the established illness group, no appreciable topological changes in the cortical network were observed in FEP patients. These results were replicated in the early psychosis patients of the HCP-EP datasets, which were indistinguishable from controls in most metrics.</p><p><strong>Conclusions: </strong>The white matter structural changes observed in established schizophrenia are not a prominent feature in the early stages of this illness.</p>","PeriodicalId":94380,"journal":{"name":"Schizophrenia bulletin open","volume":"5 1","pages":"sgae010"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11207789/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Schizophrenia bulletin open","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/schizbullopen/sgae010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background and hypothesis: Schizophrenia is associated with white matter disruption and topological reorganization of cortical connectivity but the trajectory of these changes, from the first psychotic episode to established illness, is poorly understood. Current studies in first-episode psychosis (FEP) patients using diffusion magnetic resonance imaging (dMRI) suggest such disruption may be detectable at the onset of psychosis, but specific results vary widely, and few reports have contextualized their findings with direct comparison to young adults with established illness.
Study design: Diffusion and T1-weighted 7T MR scans were obtained from N = 112 individuals (58 with untreated FEP, 17 with established schizophrenia, 37 healthy controls) recruited from London, Ontario. Voxel- and network-based analyses were used to detect changes in diffusion microstructural parameters. Graph theory metrics were used to probe changes in the cortical network hierarchy and to assess the vulnerability of hub regions to disruption. The analysis was replicated with N = 111 (57 patients, 54 controls) from the Human Connectome Project-Early Psychosis (HCP-EP) dataset.
Study results: Widespread microstructural changes were found in people with established illness, but changes in FEP patients were minimal. Unlike the established illness group, no appreciable topological changes in the cortical network were observed in FEP patients. These results were replicated in the early psychosis patients of the HCP-EP datasets, which were indistinguishable from controls in most metrics.
Conclusions: The white matter structural changes observed in established schizophrenia are not a prominent feature in the early stages of this illness.