{"title":"Brain-Inspired Computing: A Systematic Survey and Future Trends","authors":"Guoqi Li;Lei Deng;Huajin Tang;Gang Pan;Yonghong Tian;Kaushik Roy;Wolfgang Maass","doi":"10.1109/JPROC.2024.3429360","DOIUrl":null,"url":null,"abstract":"Brain-inspired computing (BIC) is an emerging research field that aims to build fundamental theories, models, hardware architectures, and application systems toward more general artificial intelligence (AI) by learning from the information processing mechanisms or structures/functions of biological nervous systems. It is regarded as one of the most promising research directions for future intelligent computing in the post-Moore era. In the past few years, various new schemes in this field have sprung up to explore more general AI. These works are quite divergent in the aspects of modeling/algorithm, software tool, hardware platform, and benchmark data since BIC is an interdisciplinary field that consists of many different domains, including computational neuroscience, AI, computer science, statistical physics, material science, and microelectronics. This situation greatly impedes researchers from obtaining a clear picture and getting started in the right way. Hence, there is an urgent requirement to do a comprehensive survey in this field to help correctly recognize and analyze such bewildering methodologies. What are the key issues to enhance the development of BIC? What roles do the current mainstream technologies play in the general framework of BIC? Which techniques are truly useful in real-world applications? These questions largely remain open. To address the above issues, in this survey, we first clarify the biggest challenge of BIC: how can AI models benefit from the recent advancements in computational neuroscience? With this challenge in mind, we will focus on discussing the concept of BIC and summarize four components of BIC infrastructure development: 1) modeling/algorithm; 2) hardware platform; 3) software tool; and 4) benchmark data. For each component, we will summarize its recent progress, main challenges to resolve, and future trends. Based on these studies, we present a general framework for the real-world applications of BIC systems, which is promising to benefit both AI and brain science. Finally, we claim that it is extremely important to build a research ecology to promote prosperity continuously in this field.","PeriodicalId":20556,"journal":{"name":"Proceedings of the IEEE","volume":"112 6","pages":"544-584"},"PeriodicalIF":23.2000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10636118/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Brain-inspired computing (BIC) is an emerging research field that aims to build fundamental theories, models, hardware architectures, and application systems toward more general artificial intelligence (AI) by learning from the information processing mechanisms or structures/functions of biological nervous systems. It is regarded as one of the most promising research directions for future intelligent computing in the post-Moore era. In the past few years, various new schemes in this field have sprung up to explore more general AI. These works are quite divergent in the aspects of modeling/algorithm, software tool, hardware platform, and benchmark data since BIC is an interdisciplinary field that consists of many different domains, including computational neuroscience, AI, computer science, statistical physics, material science, and microelectronics. This situation greatly impedes researchers from obtaining a clear picture and getting started in the right way. Hence, there is an urgent requirement to do a comprehensive survey in this field to help correctly recognize and analyze such bewildering methodologies. What are the key issues to enhance the development of BIC? What roles do the current mainstream technologies play in the general framework of BIC? Which techniques are truly useful in real-world applications? These questions largely remain open. To address the above issues, in this survey, we first clarify the biggest challenge of BIC: how can AI models benefit from the recent advancements in computational neuroscience? With this challenge in mind, we will focus on discussing the concept of BIC and summarize four components of BIC infrastructure development: 1) modeling/algorithm; 2) hardware platform; 3) software tool; and 4) benchmark data. For each component, we will summarize its recent progress, main challenges to resolve, and future trends. Based on these studies, we present a general framework for the real-world applications of BIC systems, which is promising to benefit both AI and brain science. Finally, we claim that it is extremely important to build a research ecology to promote prosperity continuously in this field.
期刊介绍:
Proceedings of the IEEE is the leading journal to provide in-depth review, survey, and tutorial coverage of the technical developments in electronics, electrical and computer engineering, and computer science. Consistently ranked as one of the top journals by Impact Factor, Article Influence Score and more, the journal serves as a trusted resource for engineers around the world.