{"title":"Tribological study of two ammonium chloride-decanoic acid deep eutectic solvents (DESs) as high-performance lubricants","authors":"Zhuocheng Li, Enhui Zhang, Weimin Li, Haichao Liu","doi":"10.1007/s40544-024-0888-1","DOIUrl":null,"url":null,"abstract":"<p>Deep eutectic solvents (DESs) are acknowledged as a novel class of functional liquid. DESs share similar physical properties with ionic liquids (ILs) and have the potential to be a novel class of lubricants. In this study, two DESs, namely tetrabutylammonium chloride-decanoic acid DES (C4-DES) and methyl tricaprylmethylammonium chloride-decanoic acid DES (C8-DES), were synthesized, and their physico-chemical properties and tribological performances were evaluated. Post-analysis of the rubbing surfaces used multiple techniques to gain insights into the lubrication mechanisms. Results show that the coefficient of friction (COF) and wear were reduced by approximately 29% and 91% for the C4-DES, and 36% and 94% for the C8-DES, compared to an ester base oil. The friction reduction behavior of the DESs is attributed to the monolayer adsorption of the polar group in the decanoic acid (DEAC), whose effectiveness is affected by the component of the ammonium salts in the DESs and the operating temperatures. In addition to the adsorbed film, worn surface analysis revealed that an ultra-thin tribochemical film with a thickness of 3–7 nm was formed on the surfaces lubricated with the C8-DES. The composition of the film was studied, and the lubrication mechanisms of the two DESs were discussed.</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Friction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40544-024-0888-1","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Deep eutectic solvents (DESs) are acknowledged as a novel class of functional liquid. DESs share similar physical properties with ionic liquids (ILs) and have the potential to be a novel class of lubricants. In this study, two DESs, namely tetrabutylammonium chloride-decanoic acid DES (C4-DES) and methyl tricaprylmethylammonium chloride-decanoic acid DES (C8-DES), were synthesized, and their physico-chemical properties and tribological performances were evaluated. Post-analysis of the rubbing surfaces used multiple techniques to gain insights into the lubrication mechanisms. Results show that the coefficient of friction (COF) and wear were reduced by approximately 29% and 91% for the C4-DES, and 36% and 94% for the C8-DES, compared to an ester base oil. The friction reduction behavior of the DESs is attributed to the monolayer adsorption of the polar group in the decanoic acid (DEAC), whose effectiveness is affected by the component of the ammonium salts in the DESs and the operating temperatures. In addition to the adsorbed film, worn surface analysis revealed that an ultra-thin tribochemical film with a thickness of 3–7 nm was formed on the surfaces lubricated with the C8-DES. The composition of the film was studied, and the lubrication mechanisms of the two DESs were discussed.
期刊介绍:
Friction is a peer-reviewed international journal for the publication of theoretical and experimental research works related to the friction, lubrication and wear. Original, high quality research papers and review articles on all aspects of tribology are welcome, including, but are not limited to, a variety of topics, such as:
Friction: Origin of friction, Friction theories, New phenomena of friction, Nano-friction, Ultra-low friction, Molecular friction, Ultra-high friction, Friction at high speed, Friction at high temperature or low temperature, Friction at solid/liquid interfaces, Bio-friction, Adhesion, etc.
Lubrication: Superlubricity, Green lubricants, Nano-lubrication, Boundary lubrication, Thin film lubrication, Elastohydrodynamic lubrication, Mixed lubrication, New lubricants, New additives, Gas lubrication, Solid lubrication, etc.
Wear: Wear materials, Wear mechanism, Wear models, Wear in severe conditions, Wear measurement, Wear monitoring, etc.
Surface Engineering: Surface texturing, Molecular films, Surface coatings, Surface modification, Bionic surfaces, etc.
Basic Sciences: Tribology system, Principles of tribology, Thermodynamics of tribo-systems, Micro-fluidics, Thermal stability of tribo-systems, etc.
Friction is an open access journal. It is published quarterly by Tsinghua University Press and Springer, and sponsored by the State Key Laboratory of Tribology (TsinghuaUniversity) and the Tribology Institute of Chinese Mechanical Engineering Society.