{"title":"Advancing primate surveillance with image recognition techniques from unmanned aerial vehicles.","authors":"Gang He, Xiao Zhang, Jie Wang, Pengfei Xu, Xiduo Hou, Wei Dong, Yinghu Lei, Xuelin Jin, Weifeng Wang, Wenyong Tian, Yan Huang, Desheng Li, Tianyu Qin, Jing Wang, Ruliang Pan, Baoguo Li, Songtao Guo","doi":"10.1002/ajp.23676","DOIUrl":null,"url":null,"abstract":"<p><p>Using unmanned aerial vehicles (UAVs) for surveys on thermostatic animals has gained prominence due to their ability to provide practical and precise dynamic censuses, contributing to developing and refining conservation strategies. However, the practical application of UAVs for animal monitoring necessitates the automation of image interpretation to enhance their effectiveness. Based on our past experiences, we present the Sichuan snub-nosed monkey (Rhinopithecus roxellana) as a case study to illustrate the effective use of thermal cameras mounted on UAVs for monitoring monkey populations in Qinling, a region characterized by magnificent biodiversity. We used the local contrast method for a small infrared target detection algorithm to collect the total population size. Through the experimental group, we determined the average optimal grayscale threshold, while the validation group confirmed that this threshold enables automatic detection and counting of target animals in similar datasets. The precision rate obtained from the experiments ranged from 85.14% to 97.60%. Our findings reveal a negative correlation between the minimum average distance between thermal spots and the count of detected individuals, indicating higher interference in images with closer thermal spots. We propose a formula for adjusting primate population estimates based on detection rates obtained from UAV surveys. Our results demonstrate the practical application of UAV-based thermal imagery and automated detection algorithms for primate monitoring, albeit with consideration of environmental factors and the need for data preprocessing. This study contributes to advancing the application of UAV technology in wildlife monitoring, with implications for conservation management and research.</p>","PeriodicalId":7662,"journal":{"name":"American Journal of Primatology","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Primatology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/ajp.23676","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Using unmanned aerial vehicles (UAVs) for surveys on thermostatic animals has gained prominence due to their ability to provide practical and precise dynamic censuses, contributing to developing and refining conservation strategies. However, the practical application of UAVs for animal monitoring necessitates the automation of image interpretation to enhance their effectiveness. Based on our past experiences, we present the Sichuan snub-nosed monkey (Rhinopithecus roxellana) as a case study to illustrate the effective use of thermal cameras mounted on UAVs for monitoring monkey populations in Qinling, a region characterized by magnificent biodiversity. We used the local contrast method for a small infrared target detection algorithm to collect the total population size. Through the experimental group, we determined the average optimal grayscale threshold, while the validation group confirmed that this threshold enables automatic detection and counting of target animals in similar datasets. The precision rate obtained from the experiments ranged from 85.14% to 97.60%. Our findings reveal a negative correlation between the minimum average distance between thermal spots and the count of detected individuals, indicating higher interference in images with closer thermal spots. We propose a formula for adjusting primate population estimates based on detection rates obtained from UAV surveys. Our results demonstrate the practical application of UAV-based thermal imagery and automated detection algorithms for primate monitoring, albeit with consideration of environmental factors and the need for data preprocessing. This study contributes to advancing the application of UAV technology in wildlife monitoring, with implications for conservation management and research.
期刊介绍:
The objective of the American Journal of Primatology is to provide a forum for the exchange of ideas and findings among primatologists and to convey our increasing understanding of this order of animals to specialists and interested readers alike.
Primatology is an unusual science in that its practitioners work in a wide variety of departments and institutions, live in countries throughout the world, and carry out a vast range of research procedures. Whether we are anthropologists, psychologists, biologists, or medical researchers, whether we live in Japan, Kenya, Brazil, or the United States, whether we conduct naturalistic observations in the field or experiments in the lab, we are united in our goal of better understanding primates. Our studies of nonhuman primates are of interest to scientists in many other disciplines ranging from entomology to sociology.