Laura Leoni, Federica Rosmini, Francesca Ledda, Mirko Parasiliti-Caprino, Fabio Settanni, Antonello Nonnato, Ezio Ghigo, Paolo Moghetti, Giulio Mengozzi, Federico Ponzetto
{"title":"Rapid UHPLC–MS/MS measurement of pregnanediol 3-glucuronide in spot urine samples for detecting ovulation","authors":"Laura Leoni, Federica Rosmini, Francesca Ledda, Mirko Parasiliti-Caprino, Fabio Settanni, Antonello Nonnato, Ezio Ghigo, Paolo Moghetti, Giulio Mengozzi, Federico Ponzetto","doi":"10.1002/bmc.5982","DOIUrl":null,"url":null,"abstract":"<p>Biochemical confirmation of ovulation typically involves measuring serum progesterone levels during the mid-luteal phase. Alternatively, this information could be obtained by monitoring urinary excretion of conjugated metabolites of ovarian steroids such as pregnanediol 3-glucuronide (PDG) using immunoassay techniques that have methodological limitations. The aim of the present study was to develop a mass spectrometry (MS)-based method for the rapid and accurate measurement of urinary PDG levels in spot urine samples. A “dilute and shoot” ultra-high-performance liquid cromatography tandem mass spectrometry (UHPLC-MS/MS) method was developed for measuring PDG urinary concentration with a 6-min analysis time. The method underwent validation in accordance with ISO 17025 documentation for quantitative methods, proving an efficient separation of PDG from other structurally similar glucuro-conjugated steroid metabolites and ensuring a sufficient sensitivity for detecting the target analyte at concentrations as low as 0.01 μg/mL. The validation protocol yielded satisfactory results in terms of accuracy, repeatability, intermediate precision, and combined uncertainty. Additionally, the stability of both the samples and calibration curves was also conducted. The application to real urine samples confirmed the method's capability to measure PDG levels throughout an entire menstrual cycle and detecting ovulation. The rapidity of the analytical platform would therefore enable high throughput analysis, which is advantageous for large cohort clinical studies.</p>","PeriodicalId":8861,"journal":{"name":"Biomedical Chromatography","volume":"38 10","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bmc.5982","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Chromatography","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bmc.5982","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Biochemical confirmation of ovulation typically involves measuring serum progesterone levels during the mid-luteal phase. Alternatively, this information could be obtained by monitoring urinary excretion of conjugated metabolites of ovarian steroids such as pregnanediol 3-glucuronide (PDG) using immunoassay techniques that have methodological limitations. The aim of the present study was to develop a mass spectrometry (MS)-based method for the rapid and accurate measurement of urinary PDG levels in spot urine samples. A “dilute and shoot” ultra-high-performance liquid cromatography tandem mass spectrometry (UHPLC-MS/MS) method was developed for measuring PDG urinary concentration with a 6-min analysis time. The method underwent validation in accordance with ISO 17025 documentation for quantitative methods, proving an efficient separation of PDG from other structurally similar glucuro-conjugated steroid metabolites and ensuring a sufficient sensitivity for detecting the target analyte at concentrations as low as 0.01 μg/mL. The validation protocol yielded satisfactory results in terms of accuracy, repeatability, intermediate precision, and combined uncertainty. Additionally, the stability of both the samples and calibration curves was also conducted. The application to real urine samples confirmed the method's capability to measure PDG levels throughout an entire menstrual cycle and detecting ovulation. The rapidity of the analytical platform would therefore enable high throughput analysis, which is advantageous for large cohort clinical studies.
期刊介绍:
Biomedical Chromatography is devoted to the publication of original papers on the applications of chromatography and allied techniques in the biological and medical sciences. Research papers and review articles cover the methods and techniques relevant to the separation, identification and determination of substances in biochemistry, biotechnology, molecular biology, cell biology, clinical chemistry, pharmacology and related disciplines. These include the analysis of body fluids, cells and tissues, purification of biologically important compounds, pharmaco-kinetics and sequencing methods using HPLC, GC, HPLC-MS, TLC, paper chromatography, affinity chromatography, gel filtration, electrophoresis and related techniques.