MADDD-seq, a novel massively parallel sequencing tool for simultaneous detection of DNA damage and mutations.

IF 16.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Nucleic Acids Research Pub Date : 2024-09-09 DOI:10.1093/nar/gkae632
Marc Vermulst, Samantha L Paskvan, Claire S Chung, Kathryn Franke, Nigel Clegg, Sam Minot, Jennifer Madeoy, Annalyssa S Long, Jean-Francois Gout, Jason H Bielas
{"title":"MADDD-seq, a novel massively parallel sequencing tool for simultaneous detection of DNA damage and mutations.","authors":"Marc Vermulst, Samantha L Paskvan, Claire S Chung, Kathryn Franke, Nigel Clegg, Sam Minot, Jennifer Madeoy, Annalyssa S Long, Jean-Francois Gout, Jason H Bielas","doi":"10.1093/nar/gkae632","DOIUrl":null,"url":null,"abstract":"<p><p>Our genome is exposed to a wide variety of DNA-damaging agents. If left unrepaired, this damage can be converted into mutations that promote carcinogenesis or the development of genetically inherited diseases. As a result, researchers and clinicians require tools that can detect DNA damage and mutations with exceptional sensitivity. In this study, we describe a massively parallel sequencing tool termed Mutation And DNA Damage Detection-seq (MADDD-seq) that is capable of detecting O6-methyl guanine lesions and mutations simultaneously, with a single assay. To illustrate the dual capabilities of MADDD-seq, we treated WT and DNA repair deficient yeast cells with the DNA-damaging agent MNNG and tracked DNA lesions and mutations over a 24-h time period. This approach allowed us to identify thousands of DNA adducts and mutations in a single sequencing run and gain deep insight into the kinetics of DNA repair and mutagenesis.</p>","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":null,"pages":null},"PeriodicalIF":16.6000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkae632","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Our genome is exposed to a wide variety of DNA-damaging agents. If left unrepaired, this damage can be converted into mutations that promote carcinogenesis or the development of genetically inherited diseases. As a result, researchers and clinicians require tools that can detect DNA damage and mutations with exceptional sensitivity. In this study, we describe a massively parallel sequencing tool termed Mutation And DNA Damage Detection-seq (MADDD-seq) that is capable of detecting O6-methyl guanine lesions and mutations simultaneously, with a single assay. To illustrate the dual capabilities of MADDD-seq, we treated WT and DNA repair deficient yeast cells with the DNA-damaging agent MNNG and tracked DNA lesions and mutations over a 24-h time period. This approach allowed us to identify thousands of DNA adducts and mutations in a single sequencing run and gain deep insight into the kinetics of DNA repair and mutagenesis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MADDD-seq 是一种新型大规模并行测序工具,用于同时检测 DNA 损伤和突变。
我们的基因组会受到各种 DNA 损伤因子的影响。如果不及时修复,这种损伤就会转化为突变,从而促进癌变或遗传性疾病的发生。因此,研究人员和临床医生需要能以超乎寻常的灵敏度检测 DNA 损伤和突变的工具。在本研究中,我们介绍了一种名为 "突变和DNA损伤检测-测序(Mutation And DNA Damage Detection-seq,MADDD-seq)"的大规模并行测序工具,它能通过单一检测方法同时检测O6-甲基鸟嘌呤损伤和突变。为了说明 MADDD-seq 的双重能力,我们用 DNA 损伤剂 MNNG 处理了 WT 和 DNA 修复缺陷酵母细胞,并跟踪了 24 小时内的 DNA 损伤和突变情况。这种方法使我们能够在一次测序中鉴定出数千个DNA加合物和突变,并深入了解DNA修复和诱变的动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nucleic Acids Research
Nucleic Acids Research 生物-生化与分子生物学
CiteScore
27.10
自引率
4.70%
发文量
1057
审稿时长
2 months
期刊介绍: Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.
期刊最新文献
High-throughput single telomere analysis using DNA microarray and fluorescent in situ hybridization DciA secures bidirectional replication initiation in Vibrio cholerae Correction to 'Expanded MutaT7 toolkit efficiently and simultaneously accesses all possible transition mutations in bacteria'. Polyubiquitinated PCNA triggers SLX4-mediated break-induced replication in alternative lengthening of telomeres (ALT) cancer cells Correction to 'Advancing quantitative PCR with color cycle multiplex amplification'.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1