The role of gastrodin in the management of CNS-related diseases: Underlying mechanisms to therapeutic perspectives.

IF 6.1 2区 医学 Q1 CHEMISTRY, MEDICINAL Phytotherapy Research Pub Date : 2024-11-01 Epub Date: 2024-08-15 DOI:10.1002/ptr.8314
Xirui He, Xufei Chen, Yan Yang, Jingyi Gu, Yulu Xie, Yujie Liu, Man Hao, Michael Heinrich
{"title":"The role of gastrodin in the management of CNS-related diseases: Underlying mechanisms to therapeutic perspectives.","authors":"Xirui He, Xufei Chen, Yan Yang, Jingyi Gu, Yulu Xie, Yujie Liu, Man Hao, Michael Heinrich","doi":"10.1002/ptr.8314","DOIUrl":null,"url":null,"abstract":"<p><p>Central nervous system (CNS)-related diseases have a high mortality rate, are a serious threat to physical and mental health, and have always been an important area of research. Gastrodin, the main active metabolite of Gastrodia elata Blume, used in Chinese medicine and food, has a wide range of pharmacological effects, mostly related to CNS disorders. This review aims to systematically summarize and discuss the effects and underlying mechanisms of gastrodin in the treatment of CNS diseases, and to assess its potential for further development as a lead drug in both biomedicine and traditional Chinese medicine. Studies on the pharmacological effects of gastrodin on the CNS indicate that it may exert anti-neurodegenerative, cerebrovascular protective, and ameliorative effects on diabetic encephalopathy, perioperative neurocognitive dysfunction, epilepsy, Tourette's syndrome, depression and anxiety, and sleep disorders through various mechanisms. To date, 110 gastrodin products have been approved for clinical use, but further multicenter clinical case-control studies are relatively scarce. Preclinical studies have confirmed that gastrodin can be used to treat CNS-related disorders. However, important concerns need to be addressed in the context of likely non-specific, assay interfering effects when gastrodin is studied using in vitro and in silico approaches, calling for a systematic assessment of the evidence to date. High-quality clinical trials should have priority to evaluate the therapeutic safety and clinical efficacy of gastrodin. Further experimental research using appropriate in vivo models is also needed, focusing on neurodegenerative diseases, cerebral ischemic and hypoxic diseases, brain damage caused by methamphetamine or heavy metals, and epilepsy.</p>","PeriodicalId":20110,"journal":{"name":"Phytotherapy Research","volume":" ","pages":"5107-5133"},"PeriodicalIF":6.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytotherapy Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/ptr.8314","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Central nervous system (CNS)-related diseases have a high mortality rate, are a serious threat to physical and mental health, and have always been an important area of research. Gastrodin, the main active metabolite of Gastrodia elata Blume, used in Chinese medicine and food, has a wide range of pharmacological effects, mostly related to CNS disorders. This review aims to systematically summarize and discuss the effects and underlying mechanisms of gastrodin in the treatment of CNS diseases, and to assess its potential for further development as a lead drug in both biomedicine and traditional Chinese medicine. Studies on the pharmacological effects of gastrodin on the CNS indicate that it may exert anti-neurodegenerative, cerebrovascular protective, and ameliorative effects on diabetic encephalopathy, perioperative neurocognitive dysfunction, epilepsy, Tourette's syndrome, depression and anxiety, and sleep disorders through various mechanisms. To date, 110 gastrodin products have been approved for clinical use, but further multicenter clinical case-control studies are relatively scarce. Preclinical studies have confirmed that gastrodin can be used to treat CNS-related disorders. However, important concerns need to be addressed in the context of likely non-specific, assay interfering effects when gastrodin is studied using in vitro and in silico approaches, calling for a systematic assessment of the evidence to date. High-quality clinical trials should have priority to evaluate the therapeutic safety and clinical efficacy of gastrodin. Further experimental research using appropriate in vivo models is also needed, focusing on neurodegenerative diseases, cerebral ischemic and hypoxic diseases, brain damage caused by methamphetamine or heavy metals, and epilepsy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
胃泌素在治疗中枢神经系统相关疾病中的作用:从基本机制到治疗前景。
与中枢神经系统(CNS)相关的疾病死亡率很高,严重威胁人们的身心健康,一直是研究的重要领域。天麻素是天麻的主要活性代谢产物,可用于中药和食品,具有广泛的药理作用,其中大部分与中枢神经系统疾病有关。本综述旨在系统地总结和讨论天麻素在治疗中枢神经系统疾病方面的作用和内在机制,并评估其作为生物医学和传统中药领域先导药物进一步开发的潜力。有关天麻素对中枢神经系统药理作用的研究表明,天麻素可通过各种机制对糖尿病脑病、围手术期神经认知功能障碍、癫痫、抽动症、抑郁和焦虑以及睡眠障碍等发挥抗神经退行性病变、脑血管保护和改善作用。迄今为止,已有 110 种胃泌素产品被批准用于临床,但进一步的多中心临床病例对照研究相对较少。临床前研究证实,天麻素可用于治疗中枢神经系统相关疾病。然而,在使用体外和硅学方法研究天麻素时,需要解决可能存在的非特异性检测干扰效应这一重要问题,这就要求对迄今为止的证据进行系统评估。高质量的临床试验应优先评估天麻素的治疗安全性和临床疗效。还需要使用适当的体内模型开展进一步的实验研究,重点研究神经退行性疾病、脑缺血和缺氧性疾病、甲基苯丙胺或重金属引起的脑损伤以及癫痫。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Phytotherapy Research
Phytotherapy Research 医学-药学
CiteScore
12.80
自引率
5.60%
发文量
325
审稿时长
2.6 months
期刊介绍: Phytotherapy Research is an internationally recognized pharmacological journal that serves as a trailblazing resource for biochemists, pharmacologists, and toxicologists. We strive to disseminate groundbreaking research on medicinal plants, pushing the boundaries of knowledge and understanding in this field. Our primary focus areas encompass pharmacology, toxicology, and the clinical applications of herbs and natural products in medicine. We actively encourage submissions on the effects of commonly consumed food ingredients and standardized plant extracts. We welcome a range of contributions including original research papers, review articles, and letters. By providing a platform for the latest developments and discoveries in phytotherapy, we aim to support the advancement of scientific knowledge and contribute to the improvement of modern medicine.
期刊最新文献
Columbianadin Ameliorates Myocardial Injury by Inhibiting Autophagy Through the PI3K/Akt/mTOR Signaling Pathway in AMI Mice and Hypoxic H9c2 Cells. Ginsenoside Rb3 Promotes Opa1-Mediated Regenerative Neurogenesis via Activating the Ido1 Pathway in Ischemic Stroke. Comprehensive Insights Into the Combinatorial Uses of Selected Phytochemicals in Colorectal Cancer Prevention and Treatment: Isothiocyanates, Quinones, Carotenoids, and Alkaloids. Emodin Inhibits AIM2 Inflammasome Activation via Modulating K27-Linked Polyubiquitination to Attenuate Renal Fibrosis. Resveratrol Bioavailability After Oral Administration: A Meta-Analysis of Clinical Trial Data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1