Aleksander Szkółka, Przemysław W. Szafrański*, Patryk Kasza, Przemysław Talik, Mirosław Krośniak, Marek Cegła and Paweł Zajdel,
{"title":"THETA as an Efficient Cu-Binding Ligand for Manual and Automated “Click” Synthesis: the Rufinamide Case","authors":"Aleksander Szkółka, Przemysław W. Szafrański*, Patryk Kasza, Przemysław Talik, Mirosław Krośniak, Marek Cegła and Paweł Zajdel, ","doi":"10.1021/acs.oprd.4c0012910.1021/acs.oprd.4c00129","DOIUrl":null,"url":null,"abstract":"<p >Rufinamide {1-[(2,6-difluorophenyl)methyl]-1<i>H</i>-1,2,3-triazole-4-carboxamide} was the first anticonvulsant agent used in the treatment of Lennox–Gastaut syndrome─a rare, complex, and severe childhood-onset epilepsy. It is synthesized by thermal azide–alkyne cycloaddition, which can produce some of the unwanted 1,5-disubstituted triazole byproduct. To address this issue, copper-catalyzed azide–alkyne cycloaddition (CuAAC) methods have been proposed. In this context, we present efficient CuAAC protocols for the synthesis of rufinamide and its precursor, methyl 1-[(2,6-difluorophenyl)methyl]-1<i>H</i>-1,2,3-triazole-4-carboxylate, using triazole Cu-chelating ligands as assisting additives for the CuAAC reactions. We compared the efficacy of tristriazole and monotriazole ligands in milligram-scale screening reactions. Among the more favorable tristriazoles, we chose tris{1-[(2-hydroxyethyl)-1<i>H</i>-1,2,3-triazol-4-yl]methyl}amine (THETA), as an alternative to the THPTA ligand, to develop 0.5 g preparative-scale manual ligand-assisted CuAAC procedures for rufinamide (87–96% with 0.5–2 mol % Cu), and its precursor (96% with 1 mol % Cu). Finally, we demonstrated the easy transfer of this protocol to an automated two-step one-pot process, employing the ChemPU synthesis platform, to obtain rufinamide precursor in quantitative yield (2 mol % Cu loading).</p>","PeriodicalId":55,"journal":{"name":"Organic Process Research & Development","volume":"28 8","pages":"3257–3266 3257–3266"},"PeriodicalIF":3.1000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.oprd.4c00129","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Process Research & Development","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.oprd.4c00129","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Rufinamide {1-[(2,6-difluorophenyl)methyl]-1H-1,2,3-triazole-4-carboxamide} was the first anticonvulsant agent used in the treatment of Lennox–Gastaut syndrome─a rare, complex, and severe childhood-onset epilepsy. It is synthesized by thermal azide–alkyne cycloaddition, which can produce some of the unwanted 1,5-disubstituted triazole byproduct. To address this issue, copper-catalyzed azide–alkyne cycloaddition (CuAAC) methods have been proposed. In this context, we present efficient CuAAC protocols for the synthesis of rufinamide and its precursor, methyl 1-[(2,6-difluorophenyl)methyl]-1H-1,2,3-triazole-4-carboxylate, using triazole Cu-chelating ligands as assisting additives for the CuAAC reactions. We compared the efficacy of tristriazole and monotriazole ligands in milligram-scale screening reactions. Among the more favorable tristriazoles, we chose tris{1-[(2-hydroxyethyl)-1H-1,2,3-triazol-4-yl]methyl}amine (THETA), as an alternative to the THPTA ligand, to develop 0.5 g preparative-scale manual ligand-assisted CuAAC procedures for rufinamide (87–96% with 0.5–2 mol % Cu), and its precursor (96% with 1 mol % Cu). Finally, we demonstrated the easy transfer of this protocol to an automated two-step one-pot process, employing the ChemPU synthesis platform, to obtain rufinamide precursor in quantitative yield (2 mol % Cu loading).
期刊介绍:
The journal Organic Process Research & Development serves as a communication tool between industrial chemists and chemists working in universities and research institutes. As such, it reports original work from the broad field of industrial process chemistry but also presents academic results that are relevant, or potentially relevant, to industrial applications. Process chemistry is the science that enables the safe, environmentally benign and ultimately economical manufacturing of organic compounds that are required in larger amounts to help address the needs of society. Consequently, the Journal encompasses every aspect of organic chemistry, including all aspects of catalysis, synthetic methodology development and synthetic strategy exploration, but also includes aspects from analytical and solid-state chemistry and chemical engineering, such as work-up tools,process safety, or flow-chemistry. The goal of development and optimization of chemical reactions and processes is their transfer to a larger scale; original work describing such studies and the actual implementation on scale is highly relevant to the journal. However, studies on new developments from either industry, research institutes or academia that have not yet been demonstrated on scale, but where an industrial utility can be expected and where the study has addressed important prerequisites for a scale-up and has given confidence into the reliability and practicality of the chemistry, also serve the mission of OPR&D as a communication tool between the different contributors to the field.