Mingyang Gao , Shicheng Wang , Zexuan Wang , Simeng Wang , Yushu Sun , Qianyun Li , Sen Lei , Qiang Li , Zhiyong Zhang , Xiaolong Ma , Wu Zhao
{"title":"Effective electromagnetic wave absorption strategy: Unlocking the potential of NiCo2O4 as an absorber","authors":"Mingyang Gao , Shicheng Wang , Zexuan Wang , Simeng Wang , Yushu Sun , Qianyun Li , Sen Lei , Qiang Li , Zhiyong Zhang , Xiaolong Ma , Wu Zhao","doi":"10.1016/j.chemphys.2024.112415","DOIUrl":null,"url":null,"abstract":"<div><p>This study addresses a scientific challenge by elucidating the influence of calcination temperature on the properties and electromagnetic wave absorption capabilities of NiCo<sub>2</sub>O<sub>4</sub>, a material whose performance is inherently tied to its preparation process. Specifically, we systematically investigate how varying calcination temperatures not only diversify the material’s composition and morphology but also enhance its electromagnetic wave absorption properties. By controlling the calcination temperature, we not only achieve the successful synthesis of NiCo<sub>2</sub>O<sub>4</sub> but also unravel intricate correlations among calcination conditions, material composition, and wave absorption performance. Notably, NiCo<sub>2</sub>O<sub>4</sub> sample calcined at 400 °C exhibits remarkable electromagnetic wave absorption, marked by an exceptional maximum reflection loss of −53.93 dB and a broad absorption bandwidth spanning 6.24 GHz. These insights contribute to advancing the frontiers of NiCo<sub>2</sub>O<sub>4</sub> utilization, particularly in the realm of electromagnetic wave absorption and beyond, underscoring the novelty and impact of our research.</p></div>","PeriodicalId":272,"journal":{"name":"Chemical Physics","volume":"587 ","pages":"Article 112415"},"PeriodicalIF":2.0000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301010424002441","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study addresses a scientific challenge by elucidating the influence of calcination temperature on the properties and electromagnetic wave absorption capabilities of NiCo2O4, a material whose performance is inherently tied to its preparation process. Specifically, we systematically investigate how varying calcination temperatures not only diversify the material’s composition and morphology but also enhance its electromagnetic wave absorption properties. By controlling the calcination temperature, we not only achieve the successful synthesis of NiCo2O4 but also unravel intricate correlations among calcination conditions, material composition, and wave absorption performance. Notably, NiCo2O4 sample calcined at 400 °C exhibits remarkable electromagnetic wave absorption, marked by an exceptional maximum reflection loss of −53.93 dB and a broad absorption bandwidth spanning 6.24 GHz. These insights contribute to advancing the frontiers of NiCo2O4 utilization, particularly in the realm of electromagnetic wave absorption and beyond, underscoring the novelty and impact of our research.
期刊介绍:
Chemical Physics publishes experimental and theoretical papers on all aspects of chemical physics. In this journal, experiments are related to theory, and in turn theoretical papers are related to present or future experiments. Subjects covered include: spectroscopy and molecular structure, interacting systems, relaxation phenomena, biological systems, materials, fundamental problems in molecular reactivity, molecular quantum theory and statistical mechanics. Computational chemistry studies of routine character are not appropriate for this journal.