Surface conditioning in cutting and abrasive processes

IF 3.2 3区 工程技术 Q2 ENGINEERING, INDUSTRIAL Cirp Annals-Manufacturing Technology Pub Date : 2024-01-01 DOI:10.1016/j.cirp.2024.05.004
Volker Schulze (2) , Jan Aurich (1) , I.S. Jawahir (1) , Bernhard Karpuschewski (1) , Jiwang Yan (2)
{"title":"Surface conditioning in cutting and abrasive processes","authors":"Volker Schulze (2) ,&nbsp;Jan Aurich (1) ,&nbsp;I.S. Jawahir (1) ,&nbsp;Bernhard Karpuschewski (1) ,&nbsp;Jiwang Yan (2)","doi":"10.1016/j.cirp.2024.05.004","DOIUrl":null,"url":null,"abstract":"<div><p>Cutting and abrasive processes affect the surface layer state of the components treated. This determines their performance in service. An adjustment of the surface layer properties would allow for enhanced performance. This paper introduces the influences of named processes on the surface layer state and their systematics. Models and sensor concepts for surface conditioning are described and combined to soft sensors which are the basis for active control within the processes. A validation study and actual applications of the conditioning concept are shown, allowing for further technological and scientific understanding of surface conditioning and its contribution to material and energy efficiency.</p></div>","PeriodicalId":55256,"journal":{"name":"Cirp Annals-Manufacturing Technology","volume":"73 2","pages":"Pages 667-693"},"PeriodicalIF":3.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0007850624001203/pdfft?md5=19d9052db75763554f7bf3472a7d0a92&pid=1-s2.0-S0007850624001203-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cirp Annals-Manufacturing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007850624001203","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

Abstract

Cutting and abrasive processes affect the surface layer state of the components treated. This determines their performance in service. An adjustment of the surface layer properties would allow for enhanced performance. This paper introduces the influences of named processes on the surface layer state and their systematics. Models and sensor concepts for surface conditioning are described and combined to soft sensors which are the basis for active control within the processes. A validation study and actual applications of the conditioning concept are shown, allowing for further technological and scientific understanding of surface conditioning and its contribution to material and energy efficiency.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
切削和研磨工艺中的表面处理
切削和研磨过程会影响所处理部件的表层状态。这决定了部件的使用性能。调整表层特性可提高性能。本文介绍了命名过程对表层状态的影响及其系统性。文中介绍了表面调节的模型和传感器概念,并将其与软传感器相结合,作为在工艺流程中进行主动控制的基础。本文还展示了调理概念的验证研究和实际应用,以便进一步从技术和科学角度了解表面调理及其对材料和能源效率的贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cirp Annals-Manufacturing Technology
Cirp Annals-Manufacturing Technology 工程技术-工程:工业
CiteScore
7.50
自引率
9.80%
发文量
137
审稿时长
13.5 months
期刊介绍: CIRP, The International Academy for Production Engineering, was founded in 1951 to promote, by scientific research, the development of all aspects of manufacturing technology covering the optimization, control and management of processes, machines and systems. This biannual ISI cited journal contains approximately 140 refereed technical and keynote papers. Subject areas covered include: Assembly, Cutting, Design, Electro-Physical and Chemical Processes, Forming, Abrasive processes, Surfaces, Machines, Production Systems and Organizations, Precision Engineering and Metrology, Life-Cycle Engineering, Microsystems Technology (MST), Nanotechnology.
期刊最新文献
Interfacial characteristics in multi-material laser powder bed fusion of CuZr/316L stainless steel Dynamic characterization and control of a back-support exoskeleton 3D-printed cycloidal actuator Throughput scaling and thermomechanical behaviour in multiplexed fused filament fabrication Generative AI and neural networks towards advanced robot cognition Precision optimized process design for highly repeatable handling with articulated industrial robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1