Anna Inguanzo, Rosaleena Mohanty, Konstantinos Poulakis, Daniel Ferreira, Barbara Segura, Franziska Albrecht, J-Sebastian Muehlboeck, Tobias Granberg, Henrik Sjöström, Per Svenningsson, Erika Franzén, Carme Junqué, Eric Westman
{"title":"MRI subtypes in Parkinson’s disease across diverse populations and clustering approaches","authors":"Anna Inguanzo, Rosaleena Mohanty, Konstantinos Poulakis, Daniel Ferreira, Barbara Segura, Franziska Albrecht, J-Sebastian Muehlboeck, Tobias Granberg, Henrik Sjöström, Per Svenningsson, Erika Franzén, Carme Junqué, Eric Westman","doi":"10.1038/s41531-024-00759-2","DOIUrl":null,"url":null,"abstract":"<p>Parkinson’s disease (PD) is clinically heterogeneous, which suggests the existence of subtypes; however, there has been no consensus regarding their characteristics. This study included 633 PD individuals across distinct cohorts: unmedicated de novo PD, medicated PD, mild-moderate PD, and a cohort based on diagnostic work-up in clinical practice. Additionally, 233 controls were included. Clustering based on cortical and subcortical gray matter measures was conducted with and without adjusting for global atrophy in the entire PD sample and validated within each cohort. Subtypes were characterized using baseline and longitudinal demographic and clinical data. Unadjusted results identified three clusters showing a gradient of neurodegeneration and symptom severity across the entire sample and the individual cohorts. When adjusting for global atrophy eight clusters were identified in the entire sample, lacking consistency in individual cohorts. This study identified atrophy-based subtypes in PD, emphasizing the significant impact of global atrophy on subtype number, patterns, and interpretation in cross-sectional analyses.</p>","PeriodicalId":19706,"journal":{"name":"NPJ Parkinson's Disease","volume":"8 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Parkinson's Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41531-024-00759-2","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Parkinson’s disease (PD) is clinically heterogeneous, which suggests the existence of subtypes; however, there has been no consensus regarding their characteristics. This study included 633 PD individuals across distinct cohorts: unmedicated de novo PD, medicated PD, mild-moderate PD, and a cohort based on diagnostic work-up in clinical practice. Additionally, 233 controls were included. Clustering based on cortical and subcortical gray matter measures was conducted with and without adjusting for global atrophy in the entire PD sample and validated within each cohort. Subtypes were characterized using baseline and longitudinal demographic and clinical data. Unadjusted results identified three clusters showing a gradient of neurodegeneration and symptom severity across the entire sample and the individual cohorts. When adjusting for global atrophy eight clusters were identified in the entire sample, lacking consistency in individual cohorts. This study identified atrophy-based subtypes in PD, emphasizing the significant impact of global atrophy on subtype number, patterns, and interpretation in cross-sectional analyses.
期刊介绍:
npj Parkinson's Disease is a comprehensive open access journal that covers a wide range of research areas related to Parkinson's disease. It publishes original studies in basic science, translational research, and clinical investigations. The journal is dedicated to advancing our understanding of Parkinson's disease by exploring various aspects such as anatomy, etiology, genetics, cellular and molecular physiology, neurophysiology, epidemiology, and therapeutic development. By providing free and immediate access to the scientific and Parkinson's disease community, npj Parkinson's Disease promotes collaboration and knowledge sharing among researchers and healthcare professionals.