Detecting cell types and densities in the tumor microenvironment improves prognostic risk assessment for breast cancer.

0 MEDICINE, RESEARCH & EXPERIMENTAL Biomolecules & biomedicine Pub Date : 2024-12-11 DOI:10.17305/bb.2024.10974
Pu Liu, Xueli Zhang, Wenwen Wang, Yunping Zhu, Yongfang Xie, Yanhong Tai, Jie Ma
{"title":"Detecting cell types and densities in the tumor microenvironment improves prognostic risk assessment for breast cancer.","authors":"Pu Liu, Xueli Zhang, Wenwen Wang, Yunping Zhu, Yongfang Xie, Yanhong Tai, Jie Ma","doi":"10.17305/bb.2024.10974","DOIUrl":null,"url":null,"abstract":"<p><p>A comprehensive evaluation of the relationship between the densities of various cell types in the breast cancer tumor microenvironment and patient prognosis is currently lacking. Additionally, the absence of a large patch-level whole slide imaging (WSI) dataset of breast cancer with annotated cell types hinders the ability of artificial intelligence to evaluate cell density in breast cancer WSI. We first employed Lasso-Cox regression to build a breast cancer prognosis assessment model based on cell density in a population study. Pathology experts manually annotated a dataset containing over 70,000 patches and used transfer learning based on ResNet152 to develop an artificial intelligence model for identifying different cell types in these patches. The results showed that significant prognostic differences were observed among breast cancer patients stratified by cell density score (P = 0.0018), with the cell density score identified as an independent prognostic factor for breast cancer patients (P < 0.05). In the validation cohort, the predictive performance for overall survival (OS) was satisfactory, with area under the curve (AUC) values of 0.893 (OS) at 1-year, 0.823 (OS) at 3-year, and 0.861 (OS) at 5-year intervals. We trained a robust model based on ResNet152, achieving over 99% classification accuracy for different cell types in patches. These achievements offer new public resources and tools for personalized treatment and prognosis assessment.</p>","PeriodicalId":72398,"journal":{"name":"Biomolecules & biomedicine","volume":" ","pages":"106-114"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11647253/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules & biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17305/bb.2024.10974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

A comprehensive evaluation of the relationship between the densities of various cell types in the breast cancer tumor microenvironment and patient prognosis is currently lacking. Additionally, the absence of a large patch-level whole slide imaging (WSI) dataset of breast cancer with annotated cell types hinders the ability of artificial intelligence to evaluate cell density in breast cancer WSI. We first employed Lasso-Cox regression to build a breast cancer prognosis assessment model based on cell density in a population study. Pathology experts manually annotated a dataset containing over 70,000 patches and used transfer learning based on ResNet152 to develop an artificial intelligence model for identifying different cell types in these patches. The results showed that significant prognostic differences were observed among breast cancer patients stratified by cell density score (P = 0.0018), with the cell density score identified as an independent prognostic factor for breast cancer patients (P < 0.05). In the validation cohort, the predictive performance for overall survival (OS) was satisfactory, with area under the curve (AUC) values of 0.893 (OS) at 1-year, 0.823 (OS) at 3-year, and 0.861 (OS) at 5-year intervals. We trained a robust model based on ResNet152, achieving over 99% classification accuracy for different cell types in patches. These achievements offer new public resources and tools for personalized treatment and prognosis assessment.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
检测肿瘤微环境中的细胞类型和密度可改进乳腺癌预后风险评估。
目前还缺乏对乳腺癌肿瘤微环境中各种细胞类型密度与患者预后之间关系的全面评估。此外,由于缺乏带有细胞类型注释的大型乳腺癌斑块级全切片成像(WSI)数据集,人工智能评估乳腺癌 WSI 中细胞密度的能力受到了阻碍。我们首先利用 Lasso-Cox 回归技术,在一项群体研究中建立了基于细胞密度的乳腺癌预后评估模型。病理专家对包含 7 万多个斑块的数据集进行人工标注,并使用基于 ResNet152 的迁移学习来开发人工智能模型,以识别这些斑块中的不同细胞类型。结果显示,按细胞密度评分分层的乳腺癌患者在预后方面存在明显差异(P = 0.0018),细胞密度评分被确定为乳腺癌患者的独立预后因素(P < 0.05)。在验证队列中,总生存期(OS)的预测效果令人满意,1 年期的曲线下面积(AUC)值为 0.893(OS),3 年期的曲线下面积(AUC)值为 0.823(OS),5 年期的曲线下面积(AUC)值为 0.861(OS)。我们训练了一个基于 ResNet152 的稳健模型,对斑块中不同细胞类型的分类准确率超过 99%。这些成果为个性化治疗和预后评估提供了新的公共资源和工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
期刊最新文献
Therapeutic effects of chlorogenic acid on allergic rhinitis through TLR4/MAPK/NF-κB pathway modulation. Silencing FOXA1 suppresses inflammation caused by LPS and promotes osteogenic differentiation of periodontal ligament stem cells through the TLR4/MyD88/NF-κB pathway. Systemic immune-inflammation index and the short-term mortality of patients with sepsis: A meta-analysis. hUC-MSC extracellular vesicles protect against hypoxic-ischemic brain injury by promoting NLRP3 ubiquitination. N6-methyladenosine methylation regulators can serve as potential biomarkers for endometriosis related infertility.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1