{"title":"Enhancing low-light images via dehazing principles: Essence and method","authors":"Fei Li , Caiju Wang , Xiaomao Li","doi":"10.1016/j.patrec.2024.07.017","DOIUrl":null,"url":null,"abstract":"<div><p>Given the visual resemblance between inverted low-light and hazy images, dehazing principles are borrowed to enhance low-light images. However, the essence of such methods remains unclear, and they are susceptible to over-enhancement. Regarding the above issues, in this letter, we present corresponding solutions. Specifically, we point out that the Haze Formation Model (HFM) used for image dehazing exhibits a Bidirectional Mapping Property (BMP), enabling adjustment of image brightness and contrast. Building upon this property, we give a comprehensive and in-depth theoretical explanation for why dehazing on inverted low-light image is a solution to the image brightness enhancement problem. Further, an Adaptive Full Dynamic Range Mapping (AFDRM) method is then proposed to guide HFM in restoring the visibility of low-light images without inversion, while overcoming the issue of over-enhancement. Extensive experiments validate our proof and demonstrate the efficacy of our method.</p></div>","PeriodicalId":54638,"journal":{"name":"Pattern Recognition Letters","volume":"185 ","pages":"Pages 167-174"},"PeriodicalIF":3.9000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167865524002204","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Given the visual resemblance between inverted low-light and hazy images, dehazing principles are borrowed to enhance low-light images. However, the essence of such methods remains unclear, and they are susceptible to over-enhancement. Regarding the above issues, in this letter, we present corresponding solutions. Specifically, we point out that the Haze Formation Model (HFM) used for image dehazing exhibits a Bidirectional Mapping Property (BMP), enabling adjustment of image brightness and contrast. Building upon this property, we give a comprehensive and in-depth theoretical explanation for why dehazing on inverted low-light image is a solution to the image brightness enhancement problem. Further, an Adaptive Full Dynamic Range Mapping (AFDRM) method is then proposed to guide HFM in restoring the visibility of low-light images without inversion, while overcoming the issue of over-enhancement. Extensive experiments validate our proof and demonstrate the efficacy of our method.
期刊介绍:
Pattern Recognition Letters aims at rapid publication of concise articles of a broad interest in pattern recognition.
Subject areas include all the current fields of interest represented by the Technical Committees of the International Association of Pattern Recognition, and other developing themes involving learning and recognition.