{"title":"Topology-aware blending method for implicit heterogeneous porous model design","authors":"Depeng Gao, Yang Gao, Yuanzhi Zhang, Hongwei Lin","doi":"10.1016/j.cad.2024.103782","DOIUrl":null,"url":null,"abstract":"<div><p>Porous structures are materials consisting of minuscule pores, where the microstructure morphology significantly impacts their macroscopic properties. Integrating different porous structures through a blending method is indispensable to cater to diverse functional regions in heterogeneous models. Previous studies on blending methods for porous structures have mainly focused on controlling the shape of blending regions, yet they have fallen short in effectively addressing topological errors in blended structures. This paper introduces a new blending method that successfully addresses this issue. Initially, a novel initialization method is proposed, which includes distinct strategies for blending regions of varying complexities. Subsequently, we formulate the challenge of eliminating topological errors as an optimization problem based on persistent homology. Through iterative updates of control coefficients, this optimization problem is solved to generate a blended porous structure. Our approach not only avoids topological errors but also governs the shape and positioning of the blending region while remaining unchanged in the structure outside blending region. The experimental outcomes validate the effectiveness of our method in producing high-quality blended porous structures. Furthermore, these results highlight potential applications of our blending method in biomimetics and the design of high-stiffness mechanical heterogeneous models.</p></div>","PeriodicalId":50632,"journal":{"name":"Computer-Aided Design","volume":"177 ","pages":"Article 103782"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Design","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001044852400109X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Porous structures are materials consisting of minuscule pores, where the microstructure morphology significantly impacts their macroscopic properties. Integrating different porous structures through a blending method is indispensable to cater to diverse functional regions in heterogeneous models. Previous studies on blending methods for porous structures have mainly focused on controlling the shape of blending regions, yet they have fallen short in effectively addressing topological errors in blended structures. This paper introduces a new blending method that successfully addresses this issue. Initially, a novel initialization method is proposed, which includes distinct strategies for blending regions of varying complexities. Subsequently, we formulate the challenge of eliminating topological errors as an optimization problem based on persistent homology. Through iterative updates of control coefficients, this optimization problem is solved to generate a blended porous structure. Our approach not only avoids topological errors but also governs the shape and positioning of the blending region while remaining unchanged in the structure outside blending region. The experimental outcomes validate the effectiveness of our method in producing high-quality blended porous structures. Furthermore, these results highlight potential applications of our blending method in biomimetics and the design of high-stiffness mechanical heterogeneous models.
期刊介绍:
Computer-Aided Design is a leading international journal that provides academia and industry with key papers on research and developments in the application of computers to design.
Computer-Aided Design invites papers reporting new research, as well as novel or particularly significant applications, within a wide range of topics, spanning all stages of design process from concept creation to manufacture and beyond.