An efficient method of predicting S-wave velocity using sparse Gaussian process regression for a tight sandstone reservoir

IF 2.2 3区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY Journal of Applied Geophysics Pub Date : 2024-08-12 DOI:10.1016/j.jappgeo.2024.105480
Yi Dang, Yijie Zhang, Baohai Wu, Hui Li, Jinghuai Gao
{"title":"An efficient method of predicting S-wave velocity using sparse Gaussian process regression for a tight sandstone reservoir","authors":"Yi Dang,&nbsp;Yijie Zhang,&nbsp;Baohai Wu,&nbsp;Hui Li,&nbsp;Jinghuai Gao","doi":"10.1016/j.jappgeo.2024.105480","DOIUrl":null,"url":null,"abstract":"<div><p>The shear wave (S-wave) velocity plays a crucial role in interpreting the lithology in seismic data, identifying fluids and predicting reservoirs. However, S-wave velocity is often unavailable due to the high cost of measurement and technical constraints. Conventional methods exhibit limitations that potentially impact the accuracy or efficiency on predicting S-wave velocity. Moreover, these methods always ignore the uncertainty quantification associated with the predicted results. This paper proposes a sparse Gaussian process regression (SGPR) method to predict the S-wave velocity in tight sandstone reservoirs. SGPR is a highly efficient regression technique that is based on the Gaussian process regression (GPR) method. In the SGPR method, inducing inputs are introduced to approximate the kernel matrix to decrease the computational complexity. A sparse set of inducing inputs and kernel hyperparameters are optimized through minimizing the Kullback-Leibler (KL) divergence between the exact posterior distribution and the approximate one. In this study, we select several types of logging data, which include porosity, water saturation, shale content, lithology and P-wave velocity, as the inputs for the SGPR method to predict S-wave velocity. To validate its effectiveness, we use the SGPR method to predict S-wave velocity in tight sandstone and compare the results with those from the GPR method, the bidirectional long short-term memory (BiLSTM) method and the Xu-White model. Additionally, we conduct cross-validation to demonstrate the robustness of the SGPR method. Our findings indicate that the SGPR method presents better performance and significant advantages about the accuracy and efficiency. Moreover, the SGPR method offers uncertainty quantification for the predicted S-wave velocity.</p></div>","PeriodicalId":54882,"journal":{"name":"Journal of Applied Geophysics","volume":"229 ","pages":"Article 105480"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Geophysics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926985124001964","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The shear wave (S-wave) velocity plays a crucial role in interpreting the lithology in seismic data, identifying fluids and predicting reservoirs. However, S-wave velocity is often unavailable due to the high cost of measurement and technical constraints. Conventional methods exhibit limitations that potentially impact the accuracy or efficiency on predicting S-wave velocity. Moreover, these methods always ignore the uncertainty quantification associated with the predicted results. This paper proposes a sparse Gaussian process regression (SGPR) method to predict the S-wave velocity in tight sandstone reservoirs. SGPR is a highly efficient regression technique that is based on the Gaussian process regression (GPR) method. In the SGPR method, inducing inputs are introduced to approximate the kernel matrix to decrease the computational complexity. A sparse set of inducing inputs and kernel hyperparameters are optimized through minimizing the Kullback-Leibler (KL) divergence between the exact posterior distribution and the approximate one. In this study, we select several types of logging data, which include porosity, water saturation, shale content, lithology and P-wave velocity, as the inputs for the SGPR method to predict S-wave velocity. To validate its effectiveness, we use the SGPR method to predict S-wave velocity in tight sandstone and compare the results with those from the GPR method, the bidirectional long short-term memory (BiLSTM) method and the Xu-White model. Additionally, we conduct cross-validation to demonstrate the robustness of the SGPR method. Our findings indicate that the SGPR method presents better performance and significant advantages about the accuracy and efficiency. Moreover, the SGPR method offers uncertainty quantification for the predicted S-wave velocity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用稀疏高斯过程回归预测致密砂岩储层 S 波速度的有效方法
剪切波(S 波)速度在解释地震数据中的岩性、识别流体和预测储层方面起着至关重要的作用。然而,由于测量成本高和技术限制,通常无法获得 S 波速度。传统方法的局限性可能会影响预测 S 波速度的准确性或效率。此外,这些方法总是忽略与预测结果相关的不确定性量化。本文提出了一种稀疏高斯过程回归(SGPR)方法,用于预测致密砂岩储层中的 S 波速度。SGPR 是一种基于高斯过程回归(GPR)方法的高效回归技术。在 SGPR 方法中,引入了诱导输入来近似核矩阵,以降低计算复杂度。通过最小化精确后验分布与近似后验分布之间的 Kullback-Leibler (KL) 发散,对稀疏的诱导输入和核超参数集进行优化。在本研究中,我们选择了几种类型的测井数据,包括孔隙度、水饱和度、页岩含量、岩性和 P 波速度,作为 SGPR 方法预测 S 波速度的输入。为了验证其有效性,我们使用 SGPR 方法预测致密砂岩中的 S 波速度,并将结果与 GPR 方法、双向长短期记忆(BiLSTM)方法和 Xu-White 模型的结果进行比较。此外,我们还进行了交叉验证,以证明 SGPR 方法的稳健性。我们的研究结果表明,SGPR 方法性能更好,在准确性和效率方面具有显著优势。此外,SGPR 方法还能对预测的 S 波速度进行不确定性量化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Applied Geophysics
Journal of Applied Geophysics 地学-地球科学综合
CiteScore
3.60
自引率
10.00%
发文量
274
审稿时长
4 months
期刊介绍: The Journal of Applied Geophysics with its key objective of responding to pertinent and timely needs, places particular emphasis on methodological developments and innovative applications of geophysical techniques for addressing environmental, engineering, and hydrological problems. Related topical research in exploration geophysics and in soil and rock physics is also covered by the Journal of Applied Geophysics.
期刊最新文献
Magnetic diagnosis model for heavy metal pollution in beach sediments of Qingdao, China An improved goal-oriented adaptive finite-element method for 3-D direct current resistivity anisotropic forward modeling using nested tetrahedra Deep learning-based geophysical joint inversion using partial channel drop method Advanced predictive modelling of electrical resistivity for geotechnical and geo-environmental applications using machine learning techniques Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1