{"title":"Synthesis and mechanistic study of Aβ42 C-terminus domain derived tetrapeptides that inhibit Alzheimer’s Aβ-aggregation-induced neurotoxicity","authors":"Naina Sehra , Rajesh Parmar , Indresh K. Maurya , Vinod Kumar , Kulbhushan Tikoo , Rahul Jain","doi":"10.1016/j.bmcl.2024.129929","DOIUrl":null,"url":null,"abstract":"<div><p>Amyloid plaque formation in the brain is mainly responsible for the onset of Alzheimer’s disease (AD). Structure-based peptides have gained importance in recent years, and rational design of the peptide sequences for the prevention of Aβ-aggregation and related toxicity is imperative. In this study, we investigate the structural modification of tetrapeptides derived from the hydrophobic C-terminal region of Aβ<sub>42</sub> “VVIA-NH<sub>2</sub>” and its <em>retro</em>-sequence “AIVV-NH<sub>2</sub>.” A preliminary screening of synthesized peptides through an MTT cell viability assay followed by a ThT fluorescence assay revealed a peptide <strong>13</strong> (Ala-Ile-Aib-Val-NH<sub>2</sub>) that showed protection against Aβ-aggregation and associated neurotoxicity. The presence of the α-helix inducer “Aib” in peptide <strong>13</strong> manifested the conformational transition from cross-β-sheets to α-helical content in Aβ<sub>42</sub>. The absence of fibrils in electron microscopic analysis suggested the inhibitory potential of peptide <strong>13</strong>. The HRMS, DLS, and ANS studies further confirmed the inhibitory activity of <strong>13</strong>, and no cytotoxicity was observed. The structure-based peptide described herein is a promising amyloid-β inhibitor and provides a new lead for the development of AD therapeutics.</p></div>","PeriodicalId":256,"journal":{"name":"Bioorganic & Medicinal Chemistry Letters","volume":"112 ","pages":"Article 129929"},"PeriodicalIF":2.5000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic & Medicinal Chemistry Letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960894X24003317","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Amyloid plaque formation in the brain is mainly responsible for the onset of Alzheimer’s disease (AD). Structure-based peptides have gained importance in recent years, and rational design of the peptide sequences for the prevention of Aβ-aggregation and related toxicity is imperative. In this study, we investigate the structural modification of tetrapeptides derived from the hydrophobic C-terminal region of Aβ42 “VVIA-NH2” and its retro-sequence “AIVV-NH2.” A preliminary screening of synthesized peptides through an MTT cell viability assay followed by a ThT fluorescence assay revealed a peptide 13 (Ala-Ile-Aib-Val-NH2) that showed protection against Aβ-aggregation and associated neurotoxicity. The presence of the α-helix inducer “Aib” in peptide 13 manifested the conformational transition from cross-β-sheets to α-helical content in Aβ42. The absence of fibrils in electron microscopic analysis suggested the inhibitory potential of peptide 13. The HRMS, DLS, and ANS studies further confirmed the inhibitory activity of 13, and no cytotoxicity was observed. The structure-based peptide described herein is a promising amyloid-β inhibitor and provides a new lead for the development of AD therapeutics.
期刊介绍:
Bioorganic & Medicinal Chemistry Letters presents preliminary experimental or theoretical research results of outstanding significance and timeliness on all aspects of science at the interface of chemistry and biology and on major advances in drug design and development. The journal publishes articles in the form of communications reporting experimental or theoretical results of special interest, and strives to provide maximum dissemination to a large, international audience.