{"title":"A robust electricity price forecasting framework based on heteroscedastic temporal Convolutional Network","authors":"","doi":"10.1016/j.ijepes.2024.110177","DOIUrl":null,"url":null,"abstract":"<div><p>Electricity price forecasting (EPF) is a complex task due to market volatility and nonlinearity, which cause rapid and unpredictable fluctuations and introduce heteroscedasticity in forecasting. These factors result in varying prediction errors over time, making it difficult for models to capture stable patterns and leading to poor performance. This study introduces the Heteroscedastic Temporal Convolutional Network (HeTCN), a novel Encoder-Decoder framework designed for day-ahead EPF. HeTCN utilizes a Temporal Convolutional Network (TCN) to capture long-term dependencies and cyclical patterns in electricity prices. A key innovation is the heteroscedastic output layer, which directly represents variable uncertainty, enhancing performance under fluctuating market conditions. Additionally, a multi-view feature selection algorithm identifies crucial factors for specific periods, improving forecast precision. The framework employs an improved loss function based on maximum likelihood estimation (MLE), which adjusts for the heteroscedastic nature of electricity prices by predicting both the mean and variance of the price distribution. This approach mitigates the impact of extreme price spikes and reduces overfitting, resulting in robust and reliable predictions. Comprehensive evaluations demonstrate HeTCN’s superiority over existing solutions such as DeepAR and the Temporal Fusion Transformer (TFT), with average improvements of 25.3%, 24.9%, and 17.4% in the mean absolute error (MAE), symmetric mean absolute percentage error (sMAPE), and the root of mean squared error (RMSE) compared to DeepAR, and 17.6%, 14.4%, and 13.6% relative to TFT across five distinct electricity markets. These results underscore HeTCN’s effectiveness in managing volatility and heteroscedasticity, marking a significant advancement in electricity price forecasting.</p></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0142061524003983/pdfft?md5=08810358ed41fd50454ad61f3855eac3&pid=1-s2.0-S0142061524003983-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical Power & Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142061524003983","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Electricity price forecasting (EPF) is a complex task due to market volatility and nonlinearity, which cause rapid and unpredictable fluctuations and introduce heteroscedasticity in forecasting. These factors result in varying prediction errors over time, making it difficult for models to capture stable patterns and leading to poor performance. This study introduces the Heteroscedastic Temporal Convolutional Network (HeTCN), a novel Encoder-Decoder framework designed for day-ahead EPF. HeTCN utilizes a Temporal Convolutional Network (TCN) to capture long-term dependencies and cyclical patterns in electricity prices. A key innovation is the heteroscedastic output layer, which directly represents variable uncertainty, enhancing performance under fluctuating market conditions. Additionally, a multi-view feature selection algorithm identifies crucial factors for specific periods, improving forecast precision. The framework employs an improved loss function based on maximum likelihood estimation (MLE), which adjusts for the heteroscedastic nature of electricity prices by predicting both the mean and variance of the price distribution. This approach mitigates the impact of extreme price spikes and reduces overfitting, resulting in robust and reliable predictions. Comprehensive evaluations demonstrate HeTCN’s superiority over existing solutions such as DeepAR and the Temporal Fusion Transformer (TFT), with average improvements of 25.3%, 24.9%, and 17.4% in the mean absolute error (MAE), symmetric mean absolute percentage error (sMAPE), and the root of mean squared error (RMSE) compared to DeepAR, and 17.6%, 14.4%, and 13.6% relative to TFT across five distinct electricity markets. These results underscore HeTCN’s effectiveness in managing volatility and heteroscedasticity, marking a significant advancement in electricity price forecasting.
期刊介绍:
The journal covers theoretical developments in electrical power and energy systems and their applications. The coverage embraces: generation and network planning; reliability; long and short term operation; expert systems; neural networks; object oriented systems; system control centres; database and information systems; stock and parameter estimation; system security and adequacy; network theory, modelling and computation; small and large system dynamics; dynamic model identification; on-line control including load and switching control; protection; distribution systems; energy economics; impact of non-conventional systems; and man-machine interfaces.
As well as original research papers, the journal publishes short contributions, book reviews and conference reports. All papers are peer-reviewed by at least two referees.