A multi-period restoration approach for resilience increase of active distribution networks by considering fault rapid recovery and component repair

IF 5 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC International Journal of Electrical Power & Energy Systems Pub Date : 2024-08-16 DOI:10.1016/j.ijepes.2024.110181
{"title":"A multi-period restoration approach for resilience increase of active distribution networks by considering fault rapid recovery and component repair","authors":"","doi":"10.1016/j.ijepes.2024.110181","DOIUrl":null,"url":null,"abstract":"<div><p>As the frequency of extreme weather events continues to rise, there is an urgent need to strengthen the safe and stable operation of active distribution networks (ADNs), and it is of great value to establish highly resilient ADNs to withstand multi-faults caused by extreme weather events. This paper proposes a multi-period restoration approach for the resilience increase of ADNs by considering fault rapid recovery and component repair under typhoon disasters. Firstly, based on the structural reliability theory, the failure rate model of the main components is established, and in light of the system information entropy, the typical fault scenario selection strategy is designed to determine the branches with high fault probability. Then, according to the fault islanding division and network reconfiguration, a fault rapid recovery method is suggested for the ADNs, where the impact of typhoon disasters on the output features of distributed generators (DGs) are taken into account, and meanwhile, the network structure and the output power of the DGs are jointly optimized to minimize the operating cost of the ADNs. Further, a fault component repair model is formulated by adopting the adaptive ant colony algorithm, and a multi-period restoration approach is proposed for the ADNs to fulfill a rolling optimization of the network reconfiguration and fault component repair. The improved IEEE 33-node and IEEE 118-node systems are used for the approach verification, and the results show that the proposed approach can effectively improve the overall load restoration level and increase the component repair efficiency. Following a multi-criteria resilience evaluation system, the proposed approach enables the ADNs to more effectively withstand typhoon disasters, offering a resilience increase of 6.93 % and 32.24 % regarding the 33-node and 118-node systems.</p></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0142061524004022/pdfft?md5=032b6529549f11421c80f70e43395985&pid=1-s2.0-S0142061524004022-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical Power & Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142061524004022","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

As the frequency of extreme weather events continues to rise, there is an urgent need to strengthen the safe and stable operation of active distribution networks (ADNs), and it is of great value to establish highly resilient ADNs to withstand multi-faults caused by extreme weather events. This paper proposes a multi-period restoration approach for the resilience increase of ADNs by considering fault rapid recovery and component repair under typhoon disasters. Firstly, based on the structural reliability theory, the failure rate model of the main components is established, and in light of the system information entropy, the typical fault scenario selection strategy is designed to determine the branches with high fault probability. Then, according to the fault islanding division and network reconfiguration, a fault rapid recovery method is suggested for the ADNs, where the impact of typhoon disasters on the output features of distributed generators (DGs) are taken into account, and meanwhile, the network structure and the output power of the DGs are jointly optimized to minimize the operating cost of the ADNs. Further, a fault component repair model is formulated by adopting the adaptive ant colony algorithm, and a multi-period restoration approach is proposed for the ADNs to fulfill a rolling optimization of the network reconfiguration and fault component repair. The improved IEEE 33-node and IEEE 118-node systems are used for the approach verification, and the results show that the proposed approach can effectively improve the overall load restoration level and increase the component repair efficiency. Following a multi-criteria resilience evaluation system, the proposed approach enables the ADNs to more effectively withstand typhoon disasters, offering a resilience increase of 6.93 % and 32.24 % regarding the 33-node and 118-node systems.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
考虑故障快速恢复和组件修复的多期恢复方法,提高主动配电网的恢复能力
随着极端天气事件频发,加强主动配电网(ADN)的安全稳定运行迫在眉睫,建立高弹性的主动配电网以抵御极端天气事件造成的多重故障具有重要价值。本文从台风灾害下故障快速恢复和元件修复的角度出发,提出了一种多周期恢复的方法,以提高 ADN 的抗灾能力。首先,基于结构可靠性理论,建立主要部件的故障率模型,并结合系统信息熵,设计典型故障场景选择策略,确定故障概率较高的分支。然后,根据故障孤岛划分和网络重构,提出了 ADN 的故障快速恢复方法,其中考虑了台风灾害对分布式发电机(DG)输出特性的影响,同时对网络结构和 DG 的输出功率进行了联合优化,使 ADN 的运行成本最小化。此外,还采用自适应蚁群算法建立了故障元件修复模型,并提出了 ADN 的多期修复方法,以实现网络重构和故障元件修复的滚动优化。利用改进后的 IEEE 33 节点和 IEEE 118 节点系统对该方法进行验证,结果表明所提出的方法能有效改善整体负载恢复水平,提高组件修复效率。根据多标准复原力评估系统,建议的方法可使 ADN 更有效地抵御台风灾害,33 节点和 118 节点系统的复原力分别提高了 6.93% 和 32.24%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Electrical Power & Energy Systems
International Journal of Electrical Power & Energy Systems 工程技术-工程:电子与电气
CiteScore
12.10
自引率
17.30%
发文量
1022
审稿时长
51 days
期刊介绍: The journal covers theoretical developments in electrical power and energy systems and their applications. The coverage embraces: generation and network planning; reliability; long and short term operation; expert systems; neural networks; object oriented systems; system control centres; database and information systems; stock and parameter estimation; system security and adequacy; network theory, modelling and computation; small and large system dynamics; dynamic model identification; on-line control including load and switching control; protection; distribution systems; energy economics; impact of non-conventional systems; and man-machine interfaces. As well as original research papers, the journal publishes short contributions, book reviews and conference reports. All papers are peer-reviewed by at least two referees.
期刊最新文献
Adaptive fault nature identification and soft restart criterion for hybrid multiterminal UHVDCs Mode identification-based model-free adaptive predictive damping control method for power system with wind farm considering communication delays Modeling of small-signal stability margin constrained optimal power flow Dynamic electricity theft behavior analysis based on active learning and incremental learning in new power systems Battery energy storage systems providing dynamic containment frequency response service
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1