Anna De Girolamo Del Mauro, Antonio Imparato, Riccardo Miscioscia, Paolo Tassini
{"title":"Flexible Screen-Printed Thermoelectric Materials Based on PEDOT:PSS/DWCNT Composites","authors":"Anna De Girolamo Del Mauro, Antonio Imparato, Riccardo Miscioscia, Paolo Tassini","doi":"10.1002/masy.202400129","DOIUrl":null,"url":null,"abstract":"<p>Screen printing technology is employed to prepare poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/double-walled carbon nanotubes (DWCNT) films as active p-type material for flexible thermoelectric generators (TEGs). Performance of the PEDOT:PSS/CNT composites have been optimized by changing the formulation inks to make them suitable for screen printing, by varying the CNT concentrations and by treating the printed polymeric films in ethylene glycol (EG). The purpose of this work is finding the processing conditions that optimize conductivity, Seebeck coefficient, and the power factor of the fully printed material. From experimental data, the composite with 10% by weight of DWCNT chemically treated in EG maximizes conductivity, Seebeck coefficient, and power factor of the material.</p>","PeriodicalId":18107,"journal":{"name":"Macromolecular Symposia","volume":"413 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Symposia","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/masy.202400129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
Abstract
Screen printing technology is employed to prepare poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/double-walled carbon nanotubes (DWCNT) films as active p-type material for flexible thermoelectric generators (TEGs). Performance of the PEDOT:PSS/CNT composites have been optimized by changing the formulation inks to make them suitable for screen printing, by varying the CNT concentrations and by treating the printed polymeric films in ethylene glycol (EG). The purpose of this work is finding the processing conditions that optimize conductivity, Seebeck coefficient, and the power factor of the fully printed material. From experimental data, the composite with 10% by weight of DWCNT chemically treated in EG maximizes conductivity, Seebeck coefficient, and power factor of the material.
期刊介绍:
Macromolecular Symposia presents state-of-the-art research articles in the field of macromolecular chemistry and physics. All submitted contributions are peer-reviewed to ensure a high quality of published manuscripts. Accepted articles will be typeset and published as a hardcover edition together with online publication at Wiley InterScience, thereby guaranteeing an immediate international dissemination.