Emily Lowry, Yiqing Wang, Tal Dagan, Amir Mitchell
{"title":"Colibactin leads to a bacteria-specific mutation pattern and self-inflicted DNA damage","authors":"Emily Lowry, Yiqing Wang, Tal Dagan, Amir Mitchell","doi":"10.1101/gr.279517.124","DOIUrl":null,"url":null,"abstract":"Colibactin produced primarily by <em>Escherichia coli</em> strains of the B2 phylogroup crosslinks DNA and can promote colon cancer in human hosts. We investigated the toxin's impact on colibactin producers and on bacteria co-cultured with producing cells. Using genome-wide genetic screens and mutation accumulation experiments we uncovered the cellular pathways that mitigate colibactin damage and revealed the specific mutations it induces. We discovered that while colibactin targets A/T rich motifs, as observed in human colon cells, it induces a bacteria-unique mutation pattern. Based on this pattern, we predicted that long-term colibactin exposure will culminate in a genomic bias in trinucleotide composition. We tested this prediction by analyzing thousands of <em>E. coli</em> genomes and found that colibactin-producing strains indeed show the predicted skewness in trinucleotide composition. Our work revealed a bacteria-specific mutation pattern and suggests that the resistance protein encoded on the colibactin pathogenicity island is insufficient in preventing self-inflicted DNA damage.","PeriodicalId":12678,"journal":{"name":"Genome research","volume":"96 1","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1101/gr.279517.124","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Colibactin produced primarily by Escherichia coli strains of the B2 phylogroup crosslinks DNA and can promote colon cancer in human hosts. We investigated the toxin's impact on colibactin producers and on bacteria co-cultured with producing cells. Using genome-wide genetic screens and mutation accumulation experiments we uncovered the cellular pathways that mitigate colibactin damage and revealed the specific mutations it induces. We discovered that while colibactin targets A/T rich motifs, as observed in human colon cells, it induces a bacteria-unique mutation pattern. Based on this pattern, we predicted that long-term colibactin exposure will culminate in a genomic bias in trinucleotide composition. We tested this prediction by analyzing thousands of E. coli genomes and found that colibactin-producing strains indeed show the predicted skewness in trinucleotide composition. Our work revealed a bacteria-specific mutation pattern and suggests that the resistance protein encoded on the colibactin pathogenicity island is insufficient in preventing self-inflicted DNA damage.
期刊介绍:
Launched in 1995, Genome Research is an international, continuously published, peer-reviewed journal that focuses on research that provides novel insights into the genome biology of all organisms, including advances in genomic medicine.
Among the topics considered by the journal are genome structure and function, comparative genomics, molecular evolution, genome-scale quantitative and population genetics, proteomics, epigenomics, and systems biology. The journal also features exciting gene discoveries and reports of cutting-edge computational biology and high-throughput methodologies.
New data in these areas are published as research papers, or methods and resource reports that provide novel information on technologies or tools that will be of interest to a broad readership. Complete data sets are presented electronically on the journal''s web site where appropriate. The journal also provides Reviews, Perspectives, and Insight/Outlook articles, which present commentary on the latest advances published both here and elsewhere, placing such progress in its broader biological context.