{"title":"Fast implicit update schemes for Cahn–Hilliard-type gradient flow in the context of Fourier-spectral methods","authors":"","doi":"10.1016/j.cma.2024.117220","DOIUrl":null,"url":null,"abstract":"<div><p>This work discusses a way of allowing fast implicit update schemes for the temporal discretization of phase-field models for gradient flow problems that employ Fourier-spectral methods for their spatial discretization. Through the repeated application of the Sherman–Morrison formula we provide a rule for approximations of the inverted tangent matrix of the corresponding Newton–Raphson method with a selectable order. Since the representation of this inversion is exact for a sufficiently high approximation order, the proposed scheme is shown to provide a fixed-point-type iterative solver for gradient flow problems that require the solution of linear systems in the context of an implicit time-integration. While the proposed scheme is applicable to general gradient flow phase-field models, we discuss the scheme in the context of the Cahn–Hilliard equation, the Swift–Hohenberg equation, and the phase-field crystal equation for which we demonstrate the performance of the proposed method in comparison with classical solvers.</p></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0045782524004766/pdfft?md5=0f1cab81751dc7da18c718fb80da9194&pid=1-s2.0-S0045782524004766-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782524004766","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This work discusses a way of allowing fast implicit update schemes for the temporal discretization of phase-field models for gradient flow problems that employ Fourier-spectral methods for their spatial discretization. Through the repeated application of the Sherman–Morrison formula we provide a rule for approximations of the inverted tangent matrix of the corresponding Newton–Raphson method with a selectable order. Since the representation of this inversion is exact for a sufficiently high approximation order, the proposed scheme is shown to provide a fixed-point-type iterative solver for gradient flow problems that require the solution of linear systems in the context of an implicit time-integration. While the proposed scheme is applicable to general gradient flow phase-field models, we discuss the scheme in the context of the Cahn–Hilliard equation, the Swift–Hohenberg equation, and the phase-field crystal equation for which we demonstrate the performance of the proposed method in comparison with classical solvers.
期刊介绍:
Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.