Synthesis and biological evaluation of novel aminoquinolines with an n-octyl linker: Impact of halogen substituents on C(7) or a terminal amino group on anticholinesterase and BACE1 activity
Ana Matošević , Marija Bartolić , Nikola Maraković , Antonio Zandona , Rajo Petrić , Dejan Opsenica , Anita Bosak
{"title":"Synthesis and biological evaluation of novel aminoquinolines with an n-octyl linker: Impact of halogen substituents on C(7) or a terminal amino group on anticholinesterase and BACE1 activity","authors":"Ana Matošević , Marija Bartolić , Nikola Maraković , Antonio Zandona , Rajo Petrić , Dejan Opsenica , Anita Bosak","doi":"10.1016/j.bmcl.2024.129928","DOIUrl":null,"url":null,"abstract":"<div><p>Alzheimer’s disease is age-related multifactorial neurodegenerative disease manifested by gradual loss of memory, cognitive decline and changes in personality. Due to rapid and continuous growth of its prevalence, the treatment of Alzheimer’s disease calls for development of new and efficacies drugs, especially those that could be able to simultaneously act on more than one of possible targets of action. Aminoquinolines have proven to be a highly promising structural scaffold in the design of such a drug as cholinesterases and β-secretase 1 inhibitors. In this study, we synthesised twenty-two new 4-aminoquinolines with different halogen atom and its position in the terminal <em>N</em>-benzyl group or with a trifluoromethyl or a chlorine as C(7)-substituents on the quinoline moiety. All compounds were evaluated as multi-target-directedligands by determining their inhibition potency towards human acetylcholinesterase, butyrylcholinesterase and β-secretase 1. All of the tested derivatives were very potent inhibitors of human acetylcholinesterase and butyrylcholinesterase with inhibition constants (<em>K</em><sub>i</sub>) in the nM to low μM range. Most were estimated to be able to cross the blood–brain barrier by passive transport and were nontoxic toward cells that represented the main models of individual organs.</p></div>","PeriodicalId":256,"journal":{"name":"Bioorganic & Medicinal Chemistry Letters","volume":"112 ","pages":"Article 129928"},"PeriodicalIF":2.5000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic & Medicinal Chemistry Letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960894X24003305","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Alzheimer’s disease is age-related multifactorial neurodegenerative disease manifested by gradual loss of memory, cognitive decline and changes in personality. Due to rapid and continuous growth of its prevalence, the treatment of Alzheimer’s disease calls for development of new and efficacies drugs, especially those that could be able to simultaneously act on more than one of possible targets of action. Aminoquinolines have proven to be a highly promising structural scaffold in the design of such a drug as cholinesterases and β-secretase 1 inhibitors. In this study, we synthesised twenty-two new 4-aminoquinolines with different halogen atom and its position in the terminal N-benzyl group or with a trifluoromethyl or a chlorine as C(7)-substituents on the quinoline moiety. All compounds were evaluated as multi-target-directedligands by determining their inhibition potency towards human acetylcholinesterase, butyrylcholinesterase and β-secretase 1. All of the tested derivatives were very potent inhibitors of human acetylcholinesterase and butyrylcholinesterase with inhibition constants (Ki) in the nM to low μM range. Most were estimated to be able to cross the blood–brain barrier by passive transport and were nontoxic toward cells that represented the main models of individual organs.
期刊介绍:
Bioorganic & Medicinal Chemistry Letters presents preliminary experimental or theoretical research results of outstanding significance and timeliness on all aspects of science at the interface of chemistry and biology and on major advances in drug design and development. The journal publishes articles in the form of communications reporting experimental or theoretical results of special interest, and strives to provide maximum dissemination to a large, international audience.