Are protein–ligand docking programs good enough to predict experimental poses of noncovalent ligands bound to the SARS-CoV-2 main protease?

IF 6.5 2区 医学 Q1 PHARMACOLOGY & PHARMACY Drug Discovery Today Pub Date : 2024-08-14 DOI:10.1016/j.drudis.2024.104137
Ariadna Llop-Peiró , Guillem Macip , Santiago Garcia-Vallvé , Gerard Pujadas
{"title":"Are protein–ligand docking programs good enough to predict experimental poses of noncovalent ligands bound to the SARS-CoV-2 main protease?","authors":"Ariadna Llop-Peiró ,&nbsp;Guillem Macip ,&nbsp;Santiago Garcia-Vallvé ,&nbsp;Gerard Pujadas","doi":"10.1016/j.drudis.2024.104137","DOIUrl":null,"url":null,"abstract":"<div><p>Hundreds of virtual screening (VS) studies have targeted the severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) main protease (M-pro) to identify small molecules that inhibit its proteolytic action. Most studies use AutoDock Vina or Glide methodologies [high-throughput VS (HTVS), standard precision (SP), or extra precision (XP)], independently or in a VS workflow. Moreover, the Protein Data Bank (PDB) includes multiple complexes between M-pro and various noncovalent ligands, providing an excellent benchmark for assessing the predictive capabilities of docking programs. Here, we analyze the ability of the three Glide methodologies and AutoDock Vina by using various target structures/preparations to predict the experimental poses of these complexes. Our aims are to optimize target setup and docking methodologies, minimize false positives, and maximize the identification of various chemotypes in a SARS-CoV-2 M-pro noncovalent inhibitor VS campaign.</p></div>","PeriodicalId":301,"journal":{"name":"Drug Discovery Today","volume":"29 10","pages":"Article 104137"},"PeriodicalIF":6.5000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Discovery Today","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359644624002629","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Hundreds of virtual screening (VS) studies have targeted the severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) main protease (M-pro) to identify small molecules that inhibit its proteolytic action. Most studies use AutoDock Vina or Glide methodologies [high-throughput VS (HTVS), standard precision (SP), or extra precision (XP)], independently or in a VS workflow. Moreover, the Protein Data Bank (PDB) includes multiple complexes between M-pro and various noncovalent ligands, providing an excellent benchmark for assessing the predictive capabilities of docking programs. Here, we analyze the ability of the three Glide methodologies and AutoDock Vina by using various target structures/preparations to predict the experimental poses of these complexes. Our aims are to optimize target setup and docking methodologies, minimize false positives, and maximize the identification of various chemotypes in a SARS-CoV-2 M-pro noncovalent inhibitor VS campaign.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
蛋白质配体对接程序是否足以预测与 SARS-CoV-2 主蛋白酶结合的非共价配体的实验位置?
数以百计的虚拟筛选(VS)研究都以严重急性呼吸系统综合征-冠状病毒 2(SARS-CoV-2)的主要蛋白酶(M-pro)为目标,以鉴定抑制其蛋白水解作用的小分子化合物。大多数研究使用 AutoDock Vina 或 Glide 方法[高通量 VS (HTVS)、标准精度 (SP) 或额外精度 (XP)],独立或在 VS 工作流程中使用。此外,蛋白质数据库(PDB)包含了 M-pro 与各种非共价配体之间的多个复合物,为评估对接程序的预测能力提供了一个极好的基准。在这里,我们通过使用各种目标结构/制剂来预测这些复合物的实验姿势,分析了三种 Glide 方法和 AutoDock Vina 的能力。我们的目的是优化目标设置和对接方法,尽量减少假阳性,并在 SARS-CoV-2 M-pro 非共价抑制剂 VS 活动中最大限度地识别各种化学类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Drug Discovery Today
Drug Discovery Today 医学-药学
CiteScore
14.80
自引率
2.70%
发文量
293
审稿时长
6 months
期刊介绍: Drug Discovery Today delivers informed and highly current reviews for the discovery community. The magazine addresses not only the rapid scientific developments in drug discovery associated technologies but also the management, commercial and regulatory issues that increasingly play a part in how R&D is planned, structured and executed. Features include comment by international experts, news and analysis of important developments, reviews of key scientific and strategic issues, overviews of recent progress in specific therapeutic areas and conference reports.
期刊最新文献
Efficacy and challenges involving combination therapies in CLL. Strategic partnerships for AI-driven drug discovery: The role of relational dynamics. Antibody-drug conjugates: prospects for the next generation. Improving access to domestic innovative medicines: characteristics and trends of approved drugs in China 2010-2024. Beyond CL and VSS: A comprehensive approach to human pharmacokinetic predictions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1