{"title":"Exploration of Clozapine-Induced Cardiomyopathy and Its Mechanism.","authors":"Shangyu Zhang, Pengyue Jin, Li Yang, Yujie Zeng, Yongguo Li, Renkuan Tang","doi":"10.1007/s12012-024-09909-7","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, by pooling the clinical data of patients who died with a history of long-term clozapine use and by examining their hearts, it was found that long-term clozapine use can lead to cardiomyopathy and that its presentation resembles arrhythmogenic cardiomyopathy (ACM), i.e., it exhibits a predominantly right ventricular fatty infiltration with mild left ventricular damage. The transcriptomic data of rat cardiomyocytes after clozapine intervention were analyzed by transcriptomic approach to explore the causes of clozapine cardiomyopathy. The cause of clozapine cardiomyopathy was then explored by a transcriptomic approach, which revealed that its clozapine action on cardiomyocytes enriched cardiomyocyte-related differential genes in biological processes such as muscle development and response to hypoxia, as well as pathways such as fatty acid metabolism and cellular autophagy. Transcriptomic analysis showed that Egr1, Egr2, ler2, Jun, Mapk9, Nr1d2, Atf3, Bhlhe40, Crem, Cry1, Cry2, Dbp were hub genes for clozapine injury to the myocardium, and that these genes may play an important role in the myocardial ACM-like changes caused by clozapine. Combined with the results of pathological examination and transcriptomic analysis, it can be concluded that the long-term action of clozapine on cardiomyocytes leads to cellular autophagy and subsequent structural remodeling of the heart, and in the remodeling affects fatty acid metabolism, which eventually leads to ACM-like changes.</p>","PeriodicalId":9570,"journal":{"name":"Cardiovascular Toxicology","volume":" ","pages":"1192-1203"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12012-024-09909-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/17 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, by pooling the clinical data of patients who died with a history of long-term clozapine use and by examining their hearts, it was found that long-term clozapine use can lead to cardiomyopathy and that its presentation resembles arrhythmogenic cardiomyopathy (ACM), i.e., it exhibits a predominantly right ventricular fatty infiltration with mild left ventricular damage. The transcriptomic data of rat cardiomyocytes after clozapine intervention were analyzed by transcriptomic approach to explore the causes of clozapine cardiomyopathy. The cause of clozapine cardiomyopathy was then explored by a transcriptomic approach, which revealed that its clozapine action on cardiomyocytes enriched cardiomyocyte-related differential genes in biological processes such as muscle development and response to hypoxia, as well as pathways such as fatty acid metabolism and cellular autophagy. Transcriptomic analysis showed that Egr1, Egr2, ler2, Jun, Mapk9, Nr1d2, Atf3, Bhlhe40, Crem, Cry1, Cry2, Dbp were hub genes for clozapine injury to the myocardium, and that these genes may play an important role in the myocardial ACM-like changes caused by clozapine. Combined with the results of pathological examination and transcriptomic analysis, it can be concluded that the long-term action of clozapine on cardiomyocytes leads to cellular autophagy and subsequent structural remodeling of the heart, and in the remodeling affects fatty acid metabolism, which eventually leads to ACM-like changes.
期刊介绍:
Cardiovascular Toxicology is the only journal dedicated to publishing contemporary issues, timely reviews, and experimental and clinical data on toxicological aspects of cardiovascular disease. CT publishes papers that will elucidate the effects, molecular mechanisms, and signaling pathways of environmental toxicants on the cardiovascular system. Also covered are the detrimental effects of new cardiovascular drugs, and cardiovascular effects of non-cardiovascular drugs, anti-cancer chemotherapy, and gene therapy. In addition, Cardiovascular Toxicology reports safety and toxicological data on new cardiovascular and non-cardiovascular drugs.