MAM7 from Vibrio parahaemolyticus: Expression, purification and effects on RAW264.7 cells

IF 1.4 4区 生物学 Q4 BIOCHEMICAL RESEARCH METHODS Protein expression and purification Pub Date : 2024-08-15 DOI:10.1016/j.pep.2024.106579
Qingsong Zeng, Peifang Lai, Mingqin Huang, Ximing Peng, Junjie Huang, Qintao Chen, Yanxu Chen, Huaqian Wang
{"title":"MAM7 from Vibrio parahaemolyticus: Expression, purification and effects on RAW264.7 cells","authors":"Qingsong Zeng,&nbsp;Peifang Lai,&nbsp;Mingqin Huang,&nbsp;Ximing Peng,&nbsp;Junjie Huang,&nbsp;Qintao Chen,&nbsp;Yanxu Chen,&nbsp;Huaqian Wang","doi":"10.1016/j.pep.2024.106579","DOIUrl":null,"url":null,"abstract":"<div><p>V. parahaemolyticus is a Gram-negative bacterium that causes gastroenteritis. Within the realm of bacterial interactions with the gut, the outer membrane protein MAM7 plays a key role. However, the precise function of MAM7 in intestinal inflammation, particularly its interactions with macrophages, remains unclear. In this study, we successfully expressed and purified recombinant MAM7. After optimization of the MAM7 expression condition, it was found that the optimal concentration and temperature were 0.75 mM and 15 °C, respectively, resulting in a 27-fold increase in its yield. Furthermore, RAW264.7 cytotoxicity assay was conducted. The CCK-8 results revealed that MAM7 substantially stimulated the proliferation of RAW264.7 cells, with its optimal concentration determined to be 7.5 μg/mL. Following this, the NO concentration of MAM7 was tested, revealing a significant increase (p &lt; 0.05) in NO levels. Additionally, the relative mRNA levels of IL-1β, IL-6, and TNF-α in RAW264.7 cells were measured by qRT-PCR, showing a remarkable elevation (p &lt; 0.05). Moreover, ELISA results demonstrated that MAM7 effectively stimulated the secretion of IL-6 and TNF-α by RAW264.7 cells. In summary, these findings strongly suggest that MAM7 serves as a proinflammatory adhesion factor with the capacity to modulate immune responses.</p></div>","PeriodicalId":20757,"journal":{"name":"Protein expression and purification","volume":"224 ","pages":"Article 106579"},"PeriodicalIF":1.4000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein expression and purification","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1046592824001517","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

V. parahaemolyticus is a Gram-negative bacterium that causes gastroenteritis. Within the realm of bacterial interactions with the gut, the outer membrane protein MAM7 plays a key role. However, the precise function of MAM7 in intestinal inflammation, particularly its interactions with macrophages, remains unclear. In this study, we successfully expressed and purified recombinant MAM7. After optimization of the MAM7 expression condition, it was found that the optimal concentration and temperature were 0.75 mM and 15 °C, respectively, resulting in a 27-fold increase in its yield. Furthermore, RAW264.7 cytotoxicity assay was conducted. The CCK-8 results revealed that MAM7 substantially stimulated the proliferation of RAW264.7 cells, with its optimal concentration determined to be 7.5 μg/mL. Following this, the NO concentration of MAM7 was tested, revealing a significant increase (p < 0.05) in NO levels. Additionally, the relative mRNA levels of IL-1β, IL-6, and TNF-α in RAW264.7 cells were measured by qRT-PCR, showing a remarkable elevation (p < 0.05). Moreover, ELISA results demonstrated that MAM7 effectively stimulated the secretion of IL-6 and TNF-α by RAW264.7 cells. In summary, these findings strongly suggest that MAM7 serves as a proinflammatory adhesion factor with the capacity to modulate immune responses.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
副溶血性弧菌中的 MAM7:表达、纯化及对 RAW264.7 细胞的影响。
副溶血性大肠杆菌是一种革兰氏阴性细菌,可引起肠胃炎。在细菌与肠道的相互作用中,外膜蛋白 MAM7 起着关键作用。然而,MAM7 在肠道炎症中的确切功能,特别是它与巨噬细胞的相互作用仍不清楚。在这项研究中,我们成功表达并纯化了重组 MAM7。在优化 MAM7 表达条件后,发现最佳浓度和温度分别为 0.75 mM 和 15°C,从而使其产量增加了 27 倍。此外,还进行了 RAW264.7 细胞毒性试验。CCK-8 结果显示,MAM7 能显著刺激 RAW264.7 细胞的增殖,其最佳浓度被确定为 7.5 μg/mL。随后,对 MAM7 的 NO 浓度进行了测试,结果显示 MAM7 的 NO 浓度显著增加(p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Protein expression and purification
Protein expression and purification 生物-生化研究方法
CiteScore
3.70
自引率
6.20%
发文量
120
审稿时长
32 days
期刊介绍: Protein Expression and Purification is an international journal providing a forum for the dissemination of new information on protein expression, extraction, purification, characterization, and/or applications using conventional biochemical and/or modern molecular biological approaches and methods, which are of broad interest to the field. The journal does not typically publish repetitive examples of protein expression and purification involving standard, well-established, methods. However, exceptions might include studies on important and/or difficult to express and/or purify proteins and/or studies that include extensive protein characterization, which provide new, previously unpublished information.
期刊最新文献
Expression and purification of the intact bacterial ergothioneine transporter EgtU Editorial Board Recombinant human FOXJ1 protein binds DNA, forms higher-order oligomers, has gel-shifting domains and contains intrinsically disordered regions Thermostable phenylacetic acid degradation protein TtPaaI from Thermus thermophilus as a scaffold for tetravalent display of proteins The heterogeneous expression, extraction, and purification of recombinant Caldanaerobacter subterraneus subsp. tengcongensis apurine/apyrimidine endonuclease in Escherichia coli
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1