Samuel N Goldman, Aaron T Hui, Sharlene Choi, Emmanuel K Mbamalu, Parsa Tirabady, Ananth S Eleswarapu, Jaime A Gomez, Leila M Alvandi, Eric D Fornari
{"title":"Applications of artificial intelligence for adolescent idiopathic scoliosis: mapping the evidence.","authors":"Samuel N Goldman, Aaron T Hui, Sharlene Choi, Emmanuel K Mbamalu, Parsa Tirabady, Ananth S Eleswarapu, Jaime A Gomez, Leila M Alvandi, Eric D Fornari","doi":"10.1007/s43390-024-00940-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Adolescent idiopathic scoliosis (AIS) is a common spinal deformity with varying progression, complicating treatment decisions. Artificial intelligence (AI) and machine learning (ML) are increasingly prominent in orthopedic care, aiding in diagnosis, risk-stratification, and treatment guidance. This scoping review outlines AI applications in AIS.</p><p><strong>Methods: </strong>This study followed PRISMA-ScR guidelines and included articles that reported the development, use, or validation of AI models for treating, diagnosing, or predicting clinical outcomes in AIS.</p><p><strong>Results: </strong>40 full-text articles were included, with most studies published in the last 5 years (77.5%). Common ML techniques were convolutional neural networks (55%), decision trees and random forests (15%), and artificial neural networks (15%). Most AI applications in AIS were for imaging analysis (25/40; 62.5%), focusing on automatic measurement of Cobb angle, and axial vertebral rotation (13/25; 52%) and curve classification/severity (13/25; 52%). Prediction was the second most common application (15/40; 37.5%), with studies predicting curve progression (9/15; 60%), and Cobb angles (9/15; 60%). Only 15 studies (37.5%) reported clinical implementation guidelines for AI in AIS management. 52.5% of studies reported model accuracy, with an average of 85.4%.</p><p><strong>Conclusion: </strong>This review highlights the applications of AI in AIS care, notably including automatic radiographic analysis, curve type classification, prediction of curve progression, and AIS diagnosis. However, the current lack of clear clinical implementation guidelines, model transparency, and external validation of studied models limits clinician trust and the generalizability and applicability of AI in AIS management.</p>","PeriodicalId":21796,"journal":{"name":"Spine deformity","volume":" ","pages":"1545-1570"},"PeriodicalIF":1.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11499369/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spine deformity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s43390-024-00940-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/17 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Adolescent idiopathic scoliosis (AIS) is a common spinal deformity with varying progression, complicating treatment decisions. Artificial intelligence (AI) and machine learning (ML) are increasingly prominent in orthopedic care, aiding in diagnosis, risk-stratification, and treatment guidance. This scoping review outlines AI applications in AIS.
Methods: This study followed PRISMA-ScR guidelines and included articles that reported the development, use, or validation of AI models for treating, diagnosing, or predicting clinical outcomes in AIS.
Results: 40 full-text articles were included, with most studies published in the last 5 years (77.5%). Common ML techniques were convolutional neural networks (55%), decision trees and random forests (15%), and artificial neural networks (15%). Most AI applications in AIS were for imaging analysis (25/40; 62.5%), focusing on automatic measurement of Cobb angle, and axial vertebral rotation (13/25; 52%) and curve classification/severity (13/25; 52%). Prediction was the second most common application (15/40; 37.5%), with studies predicting curve progression (9/15; 60%), and Cobb angles (9/15; 60%). Only 15 studies (37.5%) reported clinical implementation guidelines for AI in AIS management. 52.5% of studies reported model accuracy, with an average of 85.4%.
Conclusion: This review highlights the applications of AI in AIS care, notably including automatic radiographic analysis, curve type classification, prediction of curve progression, and AIS diagnosis. However, the current lack of clear clinical implementation guidelines, model transparency, and external validation of studied models limits clinician trust and the generalizability and applicability of AI in AIS management.
期刊介绍:
Spine Deformity the official journal of the?Scoliosis Research Society is a peer-refereed publication to disseminate knowledge on basic science and clinical research into the?etiology?biomechanics?treatment?methods and outcomes of all types of?spinal deformities. The international members of the Editorial Board provide a worldwide perspective for the journal's area of interest.The?journal?will enhance the mission of the Society which is to foster the optimal care of all patients with?spine?deformities worldwide. Articles published in?Spine Deformity?are Medline indexed in PubMed.? The journal publishes original articles in the form of clinical and basic research. Spine Deformity will only publish studies that have institutional review board (IRB) or similar ethics committee approval for human and animal studies and have strictly observed these guidelines. The minimum follow-up period for follow-up clinical studies is 24 months.