Crystal structure of blue laccase BP76, a unique termite suicidal defense weapon.

IF 4.4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Structure Pub Date : 2024-10-03 Epub Date: 2024-08-15 DOI:10.1016/j.str.2024.07.015
Jana Škerlová, Jiří Brynda, Jan Šobotník, Marek Zákopčaník, Petr Novák, Thomas Bourguignon, David Sillam-Dussès, Pavlína Řezáčová
{"title":"Crystal structure of blue laccase BP76, a unique termite suicidal defense weapon.","authors":"Jana Škerlová, Jiří Brynda, Jan Šobotník, Marek Zákopčaník, Petr Novák, Thomas Bourguignon, David Sillam-Dussès, Pavlína Řezáčová","doi":"10.1016/j.str.2024.07.015","DOIUrl":null,"url":null,"abstract":"<p><p>Aging workers of the termite Neocapritermes taracua can defend their colony by sacrificing themselves by body rupture, mixing the externally stored blue laccase BP76 with hydroquinones to produce a sticky liquid rich in toxic benzoquinones. Here, we describe the crystal structure of BP76 isolated from N. taracua in its native form. The structure reveals several stabilization strategies, including compact folding, glycosylation, and flexible loops with disulfide bridges and tight dimer interface. The remarkable stability of BP76 maintains its catalytic activity in solid state during the lifespan of N. taracua workers, providing old workers with an efficient defensive weapon to protect their colony.</p>","PeriodicalId":22168,"journal":{"name":"Structure","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structure","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.str.2024.07.015","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Aging workers of the termite Neocapritermes taracua can defend their colony by sacrificing themselves by body rupture, mixing the externally stored blue laccase BP76 with hydroquinones to produce a sticky liquid rich in toxic benzoquinones. Here, we describe the crystal structure of BP76 isolated from N. taracua in its native form. The structure reveals several stabilization strategies, including compact folding, glycosylation, and flexible loops with disulfide bridges and tight dimer interface. The remarkable stability of BP76 maintains its catalytic activity in solid state during the lifespan of N. taracua workers, providing old workers with an efficient defensive weapon to protect their colony.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种独特的白蚁自杀式防御武器--蓝色漆酶 BP76 的晶体结构。
白蚁老龄工蚁(Neocapritermes taracua)可以通过身体破裂牺牲自己来保卫自己的蚁群,将外部储存的蓝色漆酶 BP76 与对苯二酚混合,产生一种富含有毒苯醌的粘性液体。在这里,我们描述了分离自 N. taracua 的原生态 BP76 的晶体结构。该结构揭示了几种稳定策略,包括紧凑折叠、糖基化以及带有二硫桥和紧密二聚体界面的柔性环。BP76 的出色稳定性使其在固态下的催化活性在 N. taracua 工蚁的生命周期中得以维持,为老工蚁提供了保护其群体的有效防御武器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Structure
Structure 生物-生化与分子生物学
CiteScore
8.90
自引率
1.80%
发文量
155
审稿时长
3-8 weeks
期刊介绍: Structure aims to publish papers of exceptional interest in the field of structural biology. The journal strives to be essential reading for structural biologists, as well as biologists and biochemists that are interested in macromolecular structure and function. Structure strongly encourages the submission of manuscripts that present structural and molecular insights into biological function and mechanism. Other reports that address fundamental questions in structural biology, such as structure-based examinations of protein evolution, folding, and/or design, will also be considered. We will consider the application of any method, experimental or computational, at high or low resolution, to conduct structural investigations, as long as the method is appropriate for the biological, functional, and mechanistic question(s) being addressed. Likewise, reports describing single-molecule analysis of biological mechanisms are welcome. In general, the editors encourage submission of experimental structural studies that are enriched by an analysis of structure-activity relationships and will not consider studies that solely report structural information unless the structure or analysis is of exceptional and broad interest. Studies reporting only homology models, de novo models, or molecular dynamics simulations are also discouraged unless the models are informed by or validated by novel experimental data; rationalization of a large body of existing experimental evidence and making testable predictions based on a model or simulation is often not considered sufficient.
期刊最新文献
AI-driven mechanistic analysis of conformational dynamics in CNNM/CorC Mg2+ transporters IspE kinase as an anti-infective target: Role of a hydrophobic pocket in inhibitor binding Two cooperative lipid binding sites within the pleckstrin homology domain are necessary for AKT binding and stabilization to the plasma membrane Archaeal NusA2 is the ancestor of ribosomal protein eS7 in eukaryotes Structure-function analyses of human TRPV6 ancestral and derived haplotypes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1