Dynamic remodeling model based on chemotaxis of slime molds.

IF 3.1 3区 计算机科学 Q1 ENGINEERING, MULTIDISCIPLINARY Bioinspiration & Biomimetics Pub Date : 2024-08-28 DOI:10.1088/1748-3190/ad7083
Megumi Uza, Itsuki Kunita
{"title":"Dynamic remodeling model based on chemotaxis of slime molds.","authors":"Megumi Uza, Itsuki Kunita","doi":"10.1088/1748-3190/ad7083","DOIUrl":null,"url":null,"abstract":"<p><p>Social infrastructure networks, essential for daily life and economic activities, encompass utilities such as water, electricity, roads, and telecommunications. Dynamic remodeling of these systems is crucial for responding to continuous changes, unexpected events, and increased demand. This study proposes a new dynamic remodeling model inspired by biological mechanisms, focusing on a model based on the chemotaxis of slime molds. Slime molds adapt spontaneously to environmental changes by remodeling through the growth and degeneration of tubes. This capability can be applied to optimizing and dynamic remodeling social infrastructure networks. This study elucidated the chemotactic response characteristics of slime molds using biological experiments. The mold's response was observed by considering changes in the concentration of chemicals as environmental changes, confirming that slime molds adapt to environmental changes by shortening their periodic cycles. Subsequently, based on this dynamic response, we propose a new dynamic model (oscillated Physarum solver, O-PS) that extends the existing Physarum solver (PS). Numerical simulations demonstrated that the O-PS possesses rapid and efficient path-remodeling capabilities. In particular, within a simplified maze network, the O-PS was confirmed to have the same shortest-path searching ability as the PS, while being capable of faster remodeling. This study offers a new approach for optimizing and dynamically remodeling social infrastructure networks by mimicking biological mechanisms, enabling the rapid identification of solutions considering multiple objectives under complex constraints. Furthermore, the variation in convergence speed with oscillation frequency in the O-PS suggests flexibility in responding to environmental changes. Further research is required to develop more effective remodeling strategies.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinspiration & Biomimetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1088/1748-3190/ad7083","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Social infrastructure networks, essential for daily life and economic activities, encompass utilities such as water, electricity, roads, and telecommunications. Dynamic remodeling of these systems is crucial for responding to continuous changes, unexpected events, and increased demand. This study proposes a new dynamic remodeling model inspired by biological mechanisms, focusing on a model based on the chemotaxis of slime molds. Slime molds adapt spontaneously to environmental changes by remodeling through the growth and degeneration of tubes. This capability can be applied to optimizing and dynamic remodeling social infrastructure networks. This study elucidated the chemotactic response characteristics of slime molds using biological experiments. The mold's response was observed by considering changes in the concentration of chemicals as environmental changes, confirming that slime molds adapt to environmental changes by shortening their periodic cycles. Subsequently, based on this dynamic response, we propose a new dynamic model (oscillated Physarum solver, O-PS) that extends the existing Physarum solver (PS). Numerical simulations demonstrated that the O-PS possesses rapid and efficient path-remodeling capabilities. In particular, within a simplified maze network, the O-PS was confirmed to have the same shortest-path searching ability as the PS, while being capable of faster remodeling. This study offers a new approach for optimizing and dynamically remodeling social infrastructure networks by mimicking biological mechanisms, enabling the rapid identification of solutions considering multiple objectives under complex constraints. Furthermore, the variation in convergence speed with oscillation frequency in the O-PS suggests flexibility in responding to environmental changes. Further research is required to develop more effective remodeling strategies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于粘菌趋化性的动态重塑模型
社会基础设施网络对日常生活和经济活动至关重要,包括水、电、道路和电信等公用设施。这些系统的动态重塑对于应对持续变化、突发事件和需求增加至关重要。本研究受生物机制启发,提出了一种新的动态重塑模型,重点是基于粘菌趋化性的模型。粘菌通过管的生长和退化进行重塑,从而自发地适应环境变化。这种能力可用于社会基础设施网络的优化和动态重塑。本研究通过生物实验阐明了粘菌的趋化反应特性。通过将化学物质浓度的变化视为环境变化来观察霉菌的反应,证实了粘菌通过缩短周期来适应环境变化。随后,基于这种动态响应,我们提出了一种新的动态模型(振荡粘菌求解器,O-PS),该模型扩展了现有的粘菌求解器(PS)。数值模拟证明,O-PS 具有快速、高效的路径重塑能力。特别是在一个简化的迷宫网络中,O-PS 被证实具有与 PS 相同的最短路径搜索能力,同时能够更快地重塑路径。这项研究通过模仿生物机制,为优化和动态重塑社会基础设施网络提供了一种新方法,使人们能够在复杂的约束条件下快速找出考虑多个目标的解决方案。此外,O-PS 的收敛速度随振荡频率而变化,这表明它能灵活应对环境变化。要开发更有效的重塑策略,还需要进一步的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioinspiration & Biomimetics
Bioinspiration & Biomimetics 工程技术-材料科学:生物材料
CiteScore
5.90
自引率
14.70%
发文量
132
审稿时长
3 months
期刊介绍: Bioinspiration & Biomimetics publishes research involving the study and distillation of principles and functions found in biological systems that have been developed through evolution, and application of this knowledge to produce novel and exciting basic technologies and new approaches to solving scientific problems. It provides a forum for interdisciplinary research which acts as a pipeline, facilitating the two-way flow of ideas and understanding between the extensive bodies of knowledge of the different disciplines. It has two principal aims: to draw on biology to enrich engineering and to draw from engineering to enrich biology. The journal aims to include input from across all intersecting areas of both fields. In biology, this would include work in all fields from physiology to ecology, with either zoological or botanical focus. In engineering, this would include both design and practical application of biomimetic or bioinspired devices and systems. Typical areas of interest include: Systems, designs and structure Communication and navigation Cooperative behaviour Self-organizing biological systems Self-healing and self-assembly Aerial locomotion and aerospace applications of biomimetics Biomorphic surface and subsurface systems Marine dynamics: swimming and underwater dynamics Applications of novel materials Biomechanics; including movement, locomotion, fluidics Cellular behaviour Sensors and senses Biomimetic or bioinformed approaches to geological exploration.
期刊最新文献
Group cohesion and passive dynamics of a pair of inertial swimmers with three-dimensional hydrodynamic interactions. To hear or not to hear-That is not the only question. Vertical bending and aerodynamic performance in flying snake-inspired aerial undulation. Effects of maximum thickness position on hydrodynamic performance for fish-like swimmers. Optimization of a passive roll absorber for robotic fish based on tune mass damper.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1