{"title":"Planetary gearbox fault classification based on tooth root strain and GAF pseudo images","authors":"","doi":"10.1016/j.isatra.2024.07.039","DOIUrl":null,"url":null,"abstract":"<div><p>Traditional signal processing methods based on acceleration signals can determine whether a fault has occurred in a planetary gearbox. However, acceleration signals are severely affected by interference, causing difficulties in fault identification. This study proposes a gear fault classification method based on root strain and pseudo images. Firstly, fiber optic sensors are employed to directly acquire strain data from the ring gear root. Next, the strain signals are preprocessed using resampling and a time-domain synchronous averaging algorithm. The processed signals are encoded into two-dimensional images using Gramian Angular Fields (GAF). Then, CN-EfficientNet with contrast learning is proposed to analyze and extract deeper fault features from the image texture features. In the classification experiments for different types of faults, the accuracy reached 96.84%. The results indicate that the method can effectively accomplish the task of fault classification in planetary gearboxes. Comparative experiments with other common classification models further indicate the superior performance of the proposed learning model. Visualization based on Grad-CAM provides interpretability for the fault recognition network’s results and reveals the underlying mechanism for its excellent classification performance.</p></div>","PeriodicalId":14660,"journal":{"name":"ISA transactions","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019057824003720","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Traditional signal processing methods based on acceleration signals can determine whether a fault has occurred in a planetary gearbox. However, acceleration signals are severely affected by interference, causing difficulties in fault identification. This study proposes a gear fault classification method based on root strain and pseudo images. Firstly, fiber optic sensors are employed to directly acquire strain data from the ring gear root. Next, the strain signals are preprocessed using resampling and a time-domain synchronous averaging algorithm. The processed signals are encoded into two-dimensional images using Gramian Angular Fields (GAF). Then, CN-EfficientNet with contrast learning is proposed to analyze and extract deeper fault features from the image texture features. In the classification experiments for different types of faults, the accuracy reached 96.84%. The results indicate that the method can effectively accomplish the task of fault classification in planetary gearboxes. Comparative experiments with other common classification models further indicate the superior performance of the proposed learning model. Visualization based on Grad-CAM provides interpretability for the fault recognition network’s results and reveals the underlying mechanism for its excellent classification performance.
期刊介绍:
ISA Transactions serves as a platform for showcasing advancements in measurement and automation, catering to both industrial practitioners and applied researchers. It covers a wide array of topics within measurement, including sensors, signal processing, data analysis, and fault detection, supported by techniques such as artificial intelligence and communication systems. Automation topics encompass control strategies, modelling, system reliability, and maintenance, alongside optimization and human-machine interaction. The journal targets research and development professionals in control systems, process instrumentation, and automation from academia and industry.