Cardiac overexpression of a mitochondrial SUR2A splice variant impairs cardiac function and worsens myocardial ischemia reperfusion injury in female mice
Allison C. Wexler , Holly Dooge , Sarah El-Meanawy , Elizabeth Santos , Timothy Hacker , Aditya Tewari , Francisco J. Alvarado , Mohun Ramratnam
{"title":"Cardiac overexpression of a mitochondrial SUR2A splice variant impairs cardiac function and worsens myocardial ischemia reperfusion injury in female mice","authors":"Allison C. Wexler , Holly Dooge , Sarah El-Meanawy , Elizabeth Santos , Timothy Hacker , Aditya Tewari , Francisco J. Alvarado , Mohun Ramratnam","doi":"10.1016/j.jmccpl.2024.100088","DOIUrl":null,"url":null,"abstract":"<div><p>The small splice variant of the sulfonylurea receptor protein isoform 2 A (SUR2A-55) targets mitochondria and enhances mitoK<sub>ATP</sub> activity. In male mice the overexpression of this protein promotes cardioprotection, reducing myocardial injury after an ischemic insult. However, it is unclear what impact SUR2A-55 overexpression has on the female myocardium. To investigate the impact of SU2R2A-55 on the female heart, mice with cardiac specific transgenic overexpression of SUR2A-55 (TG<sup>SUR2A-55</sup>) were examined by resting echocardiography and histopathology. In addition, hearts were subjected to ischemia reperfusion (IR) injury. Female TG<sup>SUR2A-55</sup> mice had resting LV dysfunction and worse hemodynamic recovery with increased infarct size after IR injury. RNA-seq analysis found 227 differential expressed genes between WT and TG<sup>SUR2A-55</sup> female mouse hearts that were enriched in pathways of cellular metabolism. This was in direct contrast to male mice that had only four differentially expressed genes. Female TG<sup>SUR2A-55</sup> mice compared to female WT mice had reduced cardiomyocyte mitochondrial membrane potential without a change in electron transport chain protein expression. In addition, isolated mitochondria from female TG<sup>SUR2A-55</sup> hearts displayed reduced sensitivity to ATP and diazoxide suggestive of increased mitoK<sub>ATP</sub> activity. In conclusion, our data suggests that female TG<sup>SUR2A-55</sup> mice are unable to tolerate a more active mitoK<sub>ATP</sub> channel leading to LV dysfunction and worse response to IR injury. This is in direct contrast to our prior report showing cardioprotection in male mice overexpressing SUR2A-55 in heart. Future research directed at examining the expression and activity of mitoK<sub>ATP</sub> subunits according to sex may elucidate different treatments for male and female patients.</p></div>","PeriodicalId":73835,"journal":{"name":"Journal of molecular and cellular cardiology plus","volume":"9 ","pages":"Article 100088"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S277297612400028X/pdfft?md5=c267e0fb6c4d3b479f2f56a6cc684dd8&pid=1-s2.0-S277297612400028X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular and cellular cardiology plus","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277297612400028X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The small splice variant of the sulfonylurea receptor protein isoform 2 A (SUR2A-55) targets mitochondria and enhances mitoKATP activity. In male mice the overexpression of this protein promotes cardioprotection, reducing myocardial injury after an ischemic insult. However, it is unclear what impact SUR2A-55 overexpression has on the female myocardium. To investigate the impact of SU2R2A-55 on the female heart, mice with cardiac specific transgenic overexpression of SUR2A-55 (TGSUR2A-55) were examined by resting echocardiography and histopathology. In addition, hearts were subjected to ischemia reperfusion (IR) injury. Female TGSUR2A-55 mice had resting LV dysfunction and worse hemodynamic recovery with increased infarct size after IR injury. RNA-seq analysis found 227 differential expressed genes between WT and TGSUR2A-55 female mouse hearts that were enriched in pathways of cellular metabolism. This was in direct contrast to male mice that had only four differentially expressed genes. Female TGSUR2A-55 mice compared to female WT mice had reduced cardiomyocyte mitochondrial membrane potential without a change in electron transport chain protein expression. In addition, isolated mitochondria from female TGSUR2A-55 hearts displayed reduced sensitivity to ATP and diazoxide suggestive of increased mitoKATP activity. In conclusion, our data suggests that female TGSUR2A-55 mice are unable to tolerate a more active mitoKATP channel leading to LV dysfunction and worse response to IR injury. This is in direct contrast to our prior report showing cardioprotection in male mice overexpressing SUR2A-55 in heart. Future research directed at examining the expression and activity of mitoKATP subunits according to sex may elucidate different treatments for male and female patients.