Low pH enhances germination of eelgrass (Zostera marina L.) seeds despite ubiquitous presence of Phytophthora gemini

IF 1.9 4区 生物学 Q2 MARINE & FRESHWATER BIOLOGY Aquatic Botany Pub Date : 2024-08-08 DOI:10.1016/j.aquabot.2024.103805
{"title":"Low pH enhances germination of eelgrass (Zostera marina L.) seeds despite ubiquitous presence of Phytophthora gemini","authors":"","doi":"10.1016/j.aquabot.2024.103805","DOIUrl":null,"url":null,"abstract":"<div><p>Seagrasses are foundation species in coastal ecosystems promoting biodiversity and community structure. Future marine carbonate chemistry under ocean acidification may enhance seagrass physiology, but little is known about how reproductive ecology and disease will integrate into future ocean conditions. A novel pathogen, <em>Phytophthora gemini</em>, infects &gt;90 % of eelgrass, <em>Zostera marina,</em> surveyed in Northern Atlantic and Mediterranean populations reducing annual germination 6-fold<em>.</em> Our study investigated the combined effects of ocean acidification and <em>P. gemini</em> infection on germination of eelgrass seeds. We conducted a two-level factorial experiment crossing four pH levels (∆0, - ∆0.3, - ∆0.6, -∆0.9; relative to the average pH at the sampling site) with three infection levels (infected, non-infected, exposed) to determine germination rate and infection response. Prior to experimentation, flowering shoots were collected and held in flow-through seawater tanks where seeds ripened naturally. Once collected, seeds were held in copper sulfate solution (27.37 ± 1.57 ppt) and stored in darkness to mimic winter dormancy (4 °C). Before the start of the experiment, viable seeds were cultured on oomycete selective growth media to determine infection status. By the end of the experiment, 100 % of tested seeds, regardless of treatment, contained <em>P. gemini</em>. Germination rate significantly increased with decreased pH. Our findings indicate that <em>P. gemini</em> is not inhibited by ecologically relevant changes to carbonate chemistry and standard handling practices can result in effective and highly virulent disease transmission. These results confirm perennial populations of eelgrass are susceptible to infection and alerts conservationists to additional considerations necessary for successful eelgrass restoration.</p></div>","PeriodicalId":8273,"journal":{"name":"Aquatic Botany","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Botany","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304377024000573","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Seagrasses are foundation species in coastal ecosystems promoting biodiversity and community structure. Future marine carbonate chemistry under ocean acidification may enhance seagrass physiology, but little is known about how reproductive ecology and disease will integrate into future ocean conditions. A novel pathogen, Phytophthora gemini, infects >90 % of eelgrass, Zostera marina, surveyed in Northern Atlantic and Mediterranean populations reducing annual germination 6-fold. Our study investigated the combined effects of ocean acidification and P. gemini infection on germination of eelgrass seeds. We conducted a two-level factorial experiment crossing four pH levels (∆0, - ∆0.3, - ∆0.6, -∆0.9; relative to the average pH at the sampling site) with three infection levels (infected, non-infected, exposed) to determine germination rate and infection response. Prior to experimentation, flowering shoots were collected and held in flow-through seawater tanks where seeds ripened naturally. Once collected, seeds were held in copper sulfate solution (27.37 ± 1.57 ppt) and stored in darkness to mimic winter dormancy (4 °C). Before the start of the experiment, viable seeds were cultured on oomycete selective growth media to determine infection status. By the end of the experiment, 100 % of tested seeds, regardless of treatment, contained P. gemini. Germination rate significantly increased with decreased pH. Our findings indicate that P. gemini is not inhibited by ecologically relevant changes to carbonate chemistry and standard handling practices can result in effective and highly virulent disease transmission. These results confirm perennial populations of eelgrass are susceptible to infection and alerts conservationists to additional considerations necessary for successful eelgrass restoration.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低 pH 值可促进鳗草(Zostera marina L.)种子的萌发,尽管 Phytophthora gemini 无处不在
海草是沿海生态系统的基础物种,可促进生物多样性和群落结构。未来海洋酸化条件下的海洋碳酸盐化学可能会增强海草的生理机能,但人们对生殖生态学和疾病如何融入未来海洋条件知之甚少。一种新型病原体 Phytophthora gemini 感染了北大西洋和地中海种群中 90% 的鳗草(Zostera marina),使其年发芽率降低了 6 倍。我们的研究调查了海洋酸化和 P. gemini 感染对鳗草种子萌发的综合影响。我们进行了一个两级因子实验,跨越四个 pH 值水平(∆0、- ∆0.3、- ∆0.6、- ∆0.9;相对于取样地点的平均 pH 值)和三个感染水平(感染、非感染、暴露),以确定发芽率和感染反应。实验前,采集开花的嫩芽,并将其放入流动海水箱中,让种子自然成熟。收集种子后,将其保存在硫酸铜溶液(27.37 ± 1.57 ppt)中,并储存在黑暗处以模拟冬季休眠(4 °C)。实验开始前,将有活力的种子放在卵菌选择性生长培养基上培养,以确定感染状况。实验结束时,100% 的受测种子,无论处理方式如何,都含有 P. gemini。发芽率随着 pH 值的降低而明显提高。我们的研究结果表明,P. gemini 不受与生态相关的碳酸盐化学变化的抑制,标准处理方法可导致有效的高毒性疾病传播。这些结果证实了多年生黄鳝草种群容易受到感染,并提醒保护主义者在成功恢复黄鳝草时需要考虑更多因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Aquatic Botany
Aquatic Botany 生物-海洋与淡水生物学
CiteScore
3.80
自引率
5.60%
发文量
70
审稿时长
6 months
期刊介绍: Aquatic Botany offers a platform for papers relevant to a broad international readership on fundamental and applied aspects of marine and freshwater macroscopic plants in a context of ecology or environmental biology. This includes molecular, biochemical and physiological aspects of macroscopic aquatic plants as well as the classification, structure, function, dynamics and ecological interactions in plant-dominated aquatic communities and ecosystems. It is an outlet for papers dealing with research on the consequences of disturbance and stressors (e.g. environmental fluctuations and climate change, pollution, grazing and pathogens), use and management of aquatic plants (plant production and decomposition, commercial harvest, plant control) and the conservation of aquatic plant communities (breeding, transplantation and restoration). Specialized publications on certain rare taxa or papers on aquatic macroscopic plants from under-represented regions in the world can also find their place, subject to editor evaluation. Studies on fungi or microalgae will remain outside the scope of Aquatic Botany.
期刊最新文献
Rare occurrence of only female flowers suggests a lack of sexual reproduction and potential clonality of the seagrass Halophila baillonii Asch. on the Pacific coast of Costa Rica Carbon allocation dynamics of Spartina alterniflora in Georgia saltmarsh, USA First record of the seagrass Halophila stipulacea (Forsskal) Ascherson in the waters of the continental United States (Key Biscayne, Florida) Editorial Board Iron co-limitation of Sargassum fluitans
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1