Carbon Thin-Film Electrodes as High-Performing Substrates for Correlative Single Entity Electrochemistry.

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Small Methods Pub Date : 2025-01-01 Epub Date: 2024-08-19 DOI:10.1002/smtd.202400639
Marc Brunet Cabré, Christian Schröder, Filippo Pota, Maida A Costa de Oliveira, Hugo Nolan, Lua Henderson, Laurence Brazel, Dahnan Spurling, Valeria Nicolosi, Pietro Martinuz, Mariangela Longhi, Faidra Amargianou, Peer Bärmann, Tristan Petit, Kim McKelvey, Paula E Colavita
{"title":"Carbon Thin-Film Electrodes as High-Performing Substrates for Correlative Single Entity Electrochemistry.","authors":"Marc Brunet Cabré, Christian Schröder, Filippo Pota, Maida A Costa de Oliveira, Hugo Nolan, Lua Henderson, Laurence Brazel, Dahnan Spurling, Valeria Nicolosi, Pietro Martinuz, Mariangela Longhi, Faidra Amargianou, Peer Bärmann, Tristan Petit, Kim McKelvey, Paula E Colavita","doi":"10.1002/smtd.202400639","DOIUrl":null,"url":null,"abstract":"<p><p>Correlative methods to characterize single entities by electrochemistry and microscopy/spectroscopy are increasingly needed to elucidate structure-function relationships of nanomaterials. However, the technical constraints often differ depending on the characterization techniques to be applied in combination. One of the cornerstones of correlative single-entity electrochemistry (SEE) is the substrate, which needs to achieve a high conductivity, low roughness, and electrochemical inertness. This work shows that graphitized sputtered carbon thin films constitute excellent electrodes for SEE while enabling characterization with scanning probe, optical, electron, and X-ray microscopies. Three different correlative SEE experiments using nanoparticles, nanocubes, and 2D Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene materials are reported to illustrate the potential of using carbon thin film substrates for SEE characterization. The advantages and unique capabilities of SEE correlative strategies are further demonstrated by showing that electrochemically oxidized Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene display changes in chemical bonding and electrolyte ion distribution.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2400639"},"PeriodicalIF":10.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11740950/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202400639","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Correlative methods to characterize single entities by electrochemistry and microscopy/spectroscopy are increasingly needed to elucidate structure-function relationships of nanomaterials. However, the technical constraints often differ depending on the characterization techniques to be applied in combination. One of the cornerstones of correlative single-entity electrochemistry (SEE) is the substrate, which needs to achieve a high conductivity, low roughness, and electrochemical inertness. This work shows that graphitized sputtered carbon thin films constitute excellent electrodes for SEE while enabling characterization with scanning probe, optical, electron, and X-ray microscopies. Three different correlative SEE experiments using nanoparticles, nanocubes, and 2D Ti3C2Tx MXene materials are reported to illustrate the potential of using carbon thin film substrates for SEE characterization. The advantages and unique capabilities of SEE correlative strategies are further demonstrated by showing that electrochemically oxidized Ti3C2Tx MXene display changes in chemical bonding and electrolyte ion distribution.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
碳薄膜电极作为用于相关单体电化学的高性能基底。
为了阐明纳米材料的结构-功能关系,越来越需要通过电化学和显微镜/光谱学来表征单个实体的相关方法。然而,技术上的限制往往因组合应用的表征技术而异。相关单实体电化学(SEE)的基石之一是基底,它需要实现高导电性、低粗糙度和电化学惰性。这项研究表明,石墨化溅射碳薄膜是 SEE 的绝佳电极,同时还能利用扫描探针、光学、电子和 X 射线显微镜进行表征。报告使用纳米颗粒、纳米立方体和二维 Ti3C2Tx MXene 材料进行了三种不同的相关 SEE 实验,以说明使用碳薄膜基底进行 SEE 表征的潜力。通过展示电化学氧化 Ti3C2Tx MXene 在化学键和电解质离子分布方面的变化,进一步证明了 SEE 关联策略的优势和独特能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
期刊最新文献
Innovative Method for Reliable Measurement of PEM Water Electrolyzer Component Resistances. Nanomaterials-Induced Pyroptosis: Advancing Novel Therapeutic Pathways in Nanomedicine. Visible-Light Photo-Iniferter Polymerization of Molecularly Imprinted Polymers for Direct Integration with Nanotransducers. Diatomite-Based Hybrid Electrolyte for Improving Reversibility of Cathode/Anode Interface Reaction in Zn-MnO2 Batteries. Electrosynthesis of Ru (II)-Polypyridyl Oligomeric Films on ITO Electrode for Two Terminal Non-Volatile Memory Devices and Neuromorphic Computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1