Olga Bürger, Angelika Humbel, Ivan Ivanovski, Alessandra Baumer, Anita Rauch
{"title":"Further evidence for an attenuated phenotype of in-frame DMD deletions affecting the central rod domain of dystrophin around exon 48.","authors":"Olga Bürger, Angelika Humbel, Ivan Ivanovski, Alessandra Baumer, Anita Rauch","doi":"10.1002/ajmg.a.63842","DOIUrl":null,"url":null,"abstract":"<p><p>Alterations in the X-linked recessive DMD gene cause dystrophinopathies with a broad clinical spectrum most commonly ranging from Duchenne muscular dystrophy (DMD) or Becker muscular dystrophy (BMD) to cardiomyopathy or intellectual disability. Carrier females are commonly unaffected but may show signs of dystrophinopathies. In addition, few asymptomatic male carriers with elevated creatine kinase levels have been described possibly related to deletions around exon 48. We now further support this assumed genotype-phenotype correlation by reporting an attenuated phenotype in a three-generation family with a deletion of exon 48 of the DMD gene with clinically unaffected carrier males and females. We confirmed deep intronic breakpoints in this family by genome sequencing, but such data are not available for published cases. Therefore, further observations are needed to clarify genotype-phenotype correlation in this region, since few reports also describe predicted in-frame copy number changes affecting this region in association with classical signs of dystrophinopathies.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/ajmg.a.63842","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Alterations in the X-linked recessive DMD gene cause dystrophinopathies with a broad clinical spectrum most commonly ranging from Duchenne muscular dystrophy (DMD) or Becker muscular dystrophy (BMD) to cardiomyopathy or intellectual disability. Carrier females are commonly unaffected but may show signs of dystrophinopathies. In addition, few asymptomatic male carriers with elevated creatine kinase levels have been described possibly related to deletions around exon 48. We now further support this assumed genotype-phenotype correlation by reporting an attenuated phenotype in a three-generation family with a deletion of exon 48 of the DMD gene with clinically unaffected carrier males and females. We confirmed deep intronic breakpoints in this family by genome sequencing, but such data are not available for published cases. Therefore, further observations are needed to clarify genotype-phenotype correlation in this region, since few reports also describe predicted in-frame copy number changes affecting this region in association with classical signs of dystrophinopathies.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.