Import of extracellular 2′-3′cGAMP by the folate transporter, SLC19A1, establishes an antiviral response that limits herpes simplex virus-1

IF 4.5 2区 医学 Q1 PHARMACOLOGY & PHARMACY Antiviral research Pub Date : 2024-08-21 DOI:10.1016/j.antiviral.2024.105989
Zsuzsa K. Szemere, Eain A. Murphy
{"title":"Import of extracellular 2′-3′cGAMP by the folate transporter, SLC19A1, establishes an antiviral response that limits herpes simplex virus-1","authors":"Zsuzsa K. Szemere,&nbsp;Eain A. Murphy","doi":"10.1016/j.antiviral.2024.105989","DOIUrl":null,"url":null,"abstract":"<div><p>Recently it was discovered that extracellular 2′-3′cGAMP can activate the STING pathway in a cGAS-independent fashion by being transported across the cell membrane via the folate transporter, SLC19A1, the first identified extracellular antiporter of this critical signaling molecule in cancer cells. We hypothesized that this non-canonical activation of STING pathway would function to establish an antiviral state similar to that seen with the paracrine antiviral activities of interferon. Herein, we report that treatment of the monocytic cell line, THP-1 cells and SH-SY5Y neuronal cell line with exogenous 2′-3′cGAMP induces interferon production and establishes an antiviral state that limits herpes simplex virus-1 (HSV-1), a ubiquitous virus with high seropositivity in the human population. Using either pharmaceutical inhibition or genetic knockout of SLC19A1 blocks the 2′-3′cGAMP-induced inhibition of viral replication. Our data indicate SLC19A1 functions as a newly identified antiviral mediator for extracellular 2′-3′cGAMP. This work presents novel and important findings about an antiviral mechanism which information could aid in the development of better antiviral drugs in the future.</p></div>","PeriodicalId":8259,"journal":{"name":"Antiviral research","volume":"230 ","pages":"Article 105989"},"PeriodicalIF":4.5000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antiviral research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166354224001980","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Recently it was discovered that extracellular 2′-3′cGAMP can activate the STING pathway in a cGAS-independent fashion by being transported across the cell membrane via the folate transporter, SLC19A1, the first identified extracellular antiporter of this critical signaling molecule in cancer cells. We hypothesized that this non-canonical activation of STING pathway would function to establish an antiviral state similar to that seen with the paracrine antiviral activities of interferon. Herein, we report that treatment of the monocytic cell line, THP-1 cells and SH-SY5Y neuronal cell line with exogenous 2′-3′cGAMP induces interferon production and establishes an antiviral state that limits herpes simplex virus-1 (HSV-1), a ubiquitous virus with high seropositivity in the human population. Using either pharmaceutical inhibition or genetic knockout of SLC19A1 blocks the 2′-3′cGAMP-induced inhibition of viral replication. Our data indicate SLC19A1 functions as a newly identified antiviral mediator for extracellular 2′-3′cGAMP. This work presents novel and important findings about an antiviral mechanism which information could aid in the development of better antiviral drugs in the future.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
叶酸转运体 SLC19A1 导入细胞外 2'-3'cGAMP 可建立抗病毒反应,限制单纯疱疹病毒-1。
最近发现,细胞外的 2'-3'cGAMP 可通过叶酸转运体 SLC19A1 跨细胞膜转运,以一种不依赖于 cGAS 的方式激活 STING 通路。我们假设 STING 通路的这种非经典激活功能将建立一种抗病毒状态,类似于干扰素的旁分泌抗病毒活性。在此,我们报告了用外源 2'-3'cGAMP 处理单核细胞系、THP-1 细胞和 SH-SY5Y 神经元细胞系可诱导干扰素产生,并建立一种限制单纯疱疹病毒-1(HSV-1)的抗病毒状态。使用药物抑制或基因敲除 SLC19A1 可阻止 2'-3'cGAMP 诱导的病毒复制抑制。我们的数据表明,SLC19A1 是一种新发现的细胞外 2'-3'cGAMP 抗病毒介质。这项工作提供了有关抗病毒机制的新颖而重要的发现,这些信息有助于将来开发更好的抗病毒药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Antiviral research
Antiviral research 医学-病毒学
CiteScore
17.10
自引率
3.90%
发文量
157
审稿时长
34 days
期刊介绍: Antiviral Research is a journal that focuses on various aspects of controlling viral infections in both humans and animals. It is a platform for publishing research reports, short communications, review articles, and commentaries. The journal covers a wide range of topics including antiviral drugs, antibodies, and host-response modifiers. These topics encompass their synthesis, in vitro and in vivo testing, as well as mechanisms of action. Additionally, the journal also publishes studies on the development of new or improved vaccines against viral infections in humans. It delves into assessing the safety of drugs and vaccines, tracking the evolution of drug or vaccine-resistant viruses, and developing effective countermeasures. Another area of interest includes the identification and validation of new drug targets. The journal further explores laboratory animal models of viral diseases, investigates the pathogenesis of viral diseases, and examines the mechanisms by which viruses avoid host immune responses.
期刊最新文献
Biological Characterization of AB-343, a Novel and Potent SARS-CoV-2 Mpro Inhibitor with Pan-Coronavirus Activity. Edible bird's nest: N- and O-glycan analysis and synergistic anti-avian influenza virus activity with neuraminidase inhibitors. X-206 exhibits broad-spectrum anti-β-coronavirus activity, covering SARS-CoV-2 variants and drug-resistant isolates. Meeting Report of the 37th International Conference on Antiviral Research in Gold Coast, Australia, May 20-24, 2024, organized by the International Society for Antiviral Research. The anti-tumor efficacy of a recombinant oncolytic herpes simplex virus mediated CRISPR/Cas9 delivery targeting in HPV16-positive cervical cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1