Edmund Maser, Tobias H. Buenning, Jennifer S. Strehse
{"title":"How contaminated is flatfish living near World Wars’ munition dumping sites with energetic compounds?","authors":"Edmund Maser, Tobias H. Buenning, Jennifer S. Strehse","doi":"10.1007/s00204-024-03834-y","DOIUrl":null,"url":null,"abstract":"<div><p>Seas worldwide are threatened by an emerging source of pollution as millions of tons of warfare materials were dumped after the World Wars. As their metal shells are progressively corroding, energetic compounds (EC) leak out and distribute in the marine environment. EC are taken up by aquatic organisms and pose a threat to both the marine ecosphere and the human seafood consumer because of their toxicity and potential carcinogenicity. Here, sediment samples and fish from different locations in the German North Sea of Lower Saxony were examined to determine whether EC transfer to fish living close to munition dumping areas. EC were found in sediments with a maximum concentration of 1.5 ng/kg. All analyzed fish muscle tissues/fillets and bile samples were positive for EC detection. In bile, the max. EC concentrations ranged between 0.25 and 1.25 ng/mL. Interestingly, while detected TNT metabolites in the muscle tissues were in concentrations of max. 1 ng/g (dry weight), TNT itself was found in concentrations of up to 4 ng/g (dry weight). As we found considerable higher amounts of non-metabolized TNT in the fish muscle, rather than TNT metabolites, we conclude an additional absorption route of EC into fish other than per diet. This is the first study to detect EC in the edible parts of fish caught randomly in the North Sea.</p></div>","PeriodicalId":8329,"journal":{"name":"Archives of Toxicology","volume":"98 11","pages":"3825 - 3836"},"PeriodicalIF":4.8000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00204-024-03834-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Toxicology","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s00204-024-03834-y","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Seas worldwide are threatened by an emerging source of pollution as millions of tons of warfare materials were dumped after the World Wars. As their metal shells are progressively corroding, energetic compounds (EC) leak out and distribute in the marine environment. EC are taken up by aquatic organisms and pose a threat to both the marine ecosphere and the human seafood consumer because of their toxicity and potential carcinogenicity. Here, sediment samples and fish from different locations in the German North Sea of Lower Saxony were examined to determine whether EC transfer to fish living close to munition dumping areas. EC were found in sediments with a maximum concentration of 1.5 ng/kg. All analyzed fish muscle tissues/fillets and bile samples were positive for EC detection. In bile, the max. EC concentrations ranged between 0.25 and 1.25 ng/mL. Interestingly, while detected TNT metabolites in the muscle tissues were in concentrations of max. 1 ng/g (dry weight), TNT itself was found in concentrations of up to 4 ng/g (dry weight). As we found considerable higher amounts of non-metabolized TNT in the fish muscle, rather than TNT metabolites, we conclude an additional absorption route of EC into fish other than per diet. This is the first study to detect EC in the edible parts of fish caught randomly in the North Sea.
期刊介绍:
Archives of Toxicology provides up-to-date information on the latest advances in toxicology. The journal places particular emphasis on studies relating to defined effects of chemicals and mechanisms of toxicity, including toxic activities at the molecular level, in humans and experimental animals. Coverage includes new insights into analysis and toxicokinetics and into forensic toxicology. Review articles of general interest to toxicologists are an additional important feature of the journal.