{"title":"Single-cell RNA sequencing of OSCC primary tumors and lymph nodes reveals distinct origin and phenotype of fibroblasts","authors":"","doi":"10.1016/j.canlet.2024.217180","DOIUrl":null,"url":null,"abstract":"<div><p>Desmoplasia in fibroblasts within metastatic lymph nodes (MLNs) serves as an indicator of extranodal extension (ENE), which led mortality in oral squamous cell carcinoma (OSCC). However, systematic studies on fibroblasts in MLNs are lacking. Therefore, this study characterized the differences in phenotype, function, and origin of fibroblasts between primary tumors (PTs) and lymph nodes (LNs) in OSCC.</p><p>We generated single-cell maps of PTs and paired MLNs and draining LNs from three OSCC patients. The transcriptomic atlas, pseudotime analysis, intercellular communication networks and enrichment analysis of the single cells were characterized. Phenotype and function heterogeneity of fibroblast cells between PTs and MLNs were further verified in vitro.</p><p>Among 44,052 fibroblasts, we identified two distinct subpopulations of cancer-associated myofibroblastic cells (mCAFs): <em>RGS4</em><sup>+</sup> mCAF1 and <em>COMP</em> <sup>+</sup> mCAF2. Notably, they exhibited distinct distributions, with mCAF1 predominantly localized in the PTs and mCAF2 in the MLNs. Moreover, pseudotime analysis revealed their distinct origins: mCAF1 originated from inherent normal myofibroblastic cells in the PT, whereas mCAF2 originated from fibroblastic reticular cells in the LNs. Further functional experiments using primary fibroblasts revealed that, compared to mCAF1, mCAF2 in MLNs exhibited weaker crosstalk with immune cells but enhanced extracellular matrix activity, which is closely linked to ENE formation in OSCC. Additionally, we identified two fibroblast subgroups in a transforming state, indicating a potential epithelial–mesenchymal transition.</p><p>Our research offers profound insights into the heterogeneity of fibroblasts between the PT and MLN in OSCC, serving as an essential resource for future drug discovery endeavors.</p></div>","PeriodicalId":9506,"journal":{"name":"Cancer letters","volume":null,"pages":null},"PeriodicalIF":9.1000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304383524005755","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Desmoplasia in fibroblasts within metastatic lymph nodes (MLNs) serves as an indicator of extranodal extension (ENE), which led mortality in oral squamous cell carcinoma (OSCC). However, systematic studies on fibroblasts in MLNs are lacking. Therefore, this study characterized the differences in phenotype, function, and origin of fibroblasts between primary tumors (PTs) and lymph nodes (LNs) in OSCC.
We generated single-cell maps of PTs and paired MLNs and draining LNs from three OSCC patients. The transcriptomic atlas, pseudotime analysis, intercellular communication networks and enrichment analysis of the single cells were characterized. Phenotype and function heterogeneity of fibroblast cells between PTs and MLNs were further verified in vitro.
Among 44,052 fibroblasts, we identified two distinct subpopulations of cancer-associated myofibroblastic cells (mCAFs): RGS4+ mCAF1 and COMP+ mCAF2. Notably, they exhibited distinct distributions, with mCAF1 predominantly localized in the PTs and mCAF2 in the MLNs. Moreover, pseudotime analysis revealed their distinct origins: mCAF1 originated from inherent normal myofibroblastic cells in the PT, whereas mCAF2 originated from fibroblastic reticular cells in the LNs. Further functional experiments using primary fibroblasts revealed that, compared to mCAF1, mCAF2 in MLNs exhibited weaker crosstalk with immune cells but enhanced extracellular matrix activity, which is closely linked to ENE formation in OSCC. Additionally, we identified two fibroblast subgroups in a transforming state, indicating a potential epithelial–mesenchymal transition.
Our research offers profound insights into the heterogeneity of fibroblasts between the PT and MLN in OSCC, serving as an essential resource for future drug discovery endeavors.
期刊介绍:
Cancer Letters is a reputable international journal that serves as a platform for significant and original contributions in cancer research. The journal welcomes both full-length articles and Mini Reviews in the wide-ranging field of basic and translational oncology. Furthermore, it frequently presents Special Issues that shed light on current and topical areas in cancer research.
Cancer Letters is highly interested in various fundamental aspects that can cater to a diverse readership. These areas include the molecular genetics and cell biology of cancer, radiation biology, molecular pathology, hormones and cancer, viral oncology, metastasis, and chemoprevention. The journal actively focuses on experimental therapeutics, particularly the advancement of targeted therapies for personalized cancer medicine, such as metronomic chemotherapy.
By publishing groundbreaking research and promoting advancements in cancer treatments, Cancer Letters aims to actively contribute to the fight against cancer and the improvement of patient outcomes.