Noninvasive quantification of [18F]SynVesT-1 binding using simplified reference tissue model 2.

IF 8.6 1区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING European Journal of Nuclear Medicine and Molecular Imaging Pub Date : 2024-12-01 Epub Date: 2024-08-19 DOI:10.1007/s00259-024-06885-6
Mika Naganawa, Jean-Dominique Gallezot, Songye Li, Nabeel B Nabulsi, Shannan Henry, Zhengxin Cai, David Matuskey, Yiyun Huang, Richard E Carson
{"title":"Noninvasive quantification of [<sup>18</sup>F]SynVesT-1 binding using simplified reference tissue model 2.","authors":"Mika Naganawa, Jean-Dominique Gallezot, Songye Li, Nabeel B Nabulsi, Shannan Henry, Zhengxin Cai, David Matuskey, Yiyun Huang, Richard E Carson","doi":"10.1007/s00259-024-06885-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>[<sup>18</sup>F]SynVesT-1, a positron emission tomography (PET) radiotracer for the synaptic vesicle glycoprotein 2A (SV2A), demonstrates kinetics similar to [<sup>11</sup>C]UCB-J, with high brain uptake, fast kinetics fitting well with the one-tissue compartment (1TC) model, and excellent test-retest reproducibility. Challenges arise due to the similarity between k<sub>2</sub> and [Formula: see text] (efflux rate of the reference region), when applying the simplified reference tissue model (SRTM) and related methods in [<sup>11</sup>C]UCB-J studies to accurately estimate [Formula: see text]. This study evaluated the suitability of these methods to estimate [<sup>18</sup>F]SynVesT-1 binding using centrum semiovale (CS) or cerebellum (CER) as reference regions.</p><p><strong>Method: </strong>Seven healthy participants underwent 120-min PET scans on the HRRT scanner with [<sup>18</sup>F]SynVesT-1. Six participants underwent test and retest scans. Arterial blood sampling and metabolite analysis provided input functions for the 1TC model, serving as the gold standard for kinetic parameters values. SRTM, coupled SRTM (SRTMC) and SRTM2 estimated were applied to estimate [Formula: see text](ref: CS) and DVR<sub>CER</sub>(ref: CER) values. For SRTM2, the population average of [Formula: see text] was determined from the 1TC model applied to the reference region. Test-retest variability and minimum scan time were also calculated.</p><p><strong>Results: </strong>The 1TC k<sub>2</sub> (1/min) values for CS and CER were 0.031 ± 0.004 and 0.021 ± 0.002, respectively. Although SRTMC [Formula: see text] was much higher than 1TC [Formula: see text], SRTMC underestimated BP<sub>ND</sub>(ref: CS) and DVR<sub>CER</sub> by an average of 3% and 1% across regions, respectively, due to similar bias in k<sub>2</sub> and [Formula: see text] estimation. SRTM underestimated BP<sub>ND</sub>(ref: CS) by an average of 3%, but with the CER as reference region, SRTM estimation was unstable and DVR<sub>CER</sub> underestimation varied by region (mean 10%). Using population average [Formula: see text] values, SRTM2 BP<sub>ND</sub> and DVR<sub>CER</sub> showed the best agreement with 1TC estimates.</p><p><strong>Conclusion: </strong>Our findings support the use of population [Formula: see text] value in SRTM2 with [<sup>18</sup>F]SynVesT-1 for the estimation of [Formula: see text] or DVR<sub>CER</sub>, regardless of the choice of reference region.</p>","PeriodicalId":11909,"journal":{"name":"European Journal of Nuclear Medicine and Molecular Imaging","volume":" ","pages":"113-121"},"PeriodicalIF":8.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Nuclear Medicine and Molecular Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00259-024-06885-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: [18F]SynVesT-1, a positron emission tomography (PET) radiotracer for the synaptic vesicle glycoprotein 2A (SV2A), demonstrates kinetics similar to [11C]UCB-J, with high brain uptake, fast kinetics fitting well with the one-tissue compartment (1TC) model, and excellent test-retest reproducibility. Challenges arise due to the similarity between k2 and [Formula: see text] (efflux rate of the reference region), when applying the simplified reference tissue model (SRTM) and related methods in [11C]UCB-J studies to accurately estimate [Formula: see text]. This study evaluated the suitability of these methods to estimate [18F]SynVesT-1 binding using centrum semiovale (CS) or cerebellum (CER) as reference regions.

Method: Seven healthy participants underwent 120-min PET scans on the HRRT scanner with [18F]SynVesT-1. Six participants underwent test and retest scans. Arterial blood sampling and metabolite analysis provided input functions for the 1TC model, serving as the gold standard for kinetic parameters values. SRTM, coupled SRTM (SRTMC) and SRTM2 estimated were applied to estimate [Formula: see text](ref: CS) and DVRCER(ref: CER) values. For SRTM2, the population average of [Formula: see text] was determined from the 1TC model applied to the reference region. Test-retest variability and minimum scan time were also calculated.

Results: The 1TC k2 (1/min) values for CS and CER were 0.031 ± 0.004 and 0.021 ± 0.002, respectively. Although SRTMC [Formula: see text] was much higher than 1TC [Formula: see text], SRTMC underestimated BPND(ref: CS) and DVRCER by an average of 3% and 1% across regions, respectively, due to similar bias in k2 and [Formula: see text] estimation. SRTM underestimated BPND(ref: CS) by an average of 3%, but with the CER as reference region, SRTM estimation was unstable and DVRCER underestimation varied by region (mean 10%). Using population average [Formula: see text] values, SRTM2 BPND and DVRCER showed the best agreement with 1TC estimates.

Conclusion: Our findings support the use of population [Formula: see text] value in SRTM2 with [18F]SynVesT-1 for the estimation of [Formula: see text] or DVRCER, regardless of the choice of reference region.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用简化参考组织模型 2 对[18F]SynVesT-1 结合进行无创量化。
目的:[18F]SynVesT-1 是一种用于突触小泡糖蛋白 2A (SV2A)的正电子发射断层扫描(PET)放射性示踪剂,其动力学与[11C]UCB-J 相似,具有高脑摄取率、快速动力学与单组织区室(1TC)模型非常吻合以及极佳的测试-重复再现性。在[11C]UCB-J 研究中应用简化参考组织模型(SRTM)和相关方法来准确估算[公式:见正文]时,由于 k2 与[公式:见正文](参考区域的外流率)之间的相似性而面临挑战。本研究评估了这些方法是否适用于以半卵圆形中心(CS)或小脑(CER)为参照区域估算[18F]SynVesT-1结合情况:方法:七名健康参与者在HRRT扫描仪上接受了120分钟的[18F]SynVesT-1 PET扫描。六名参与者接受了测试和复测扫描。动脉血采样和代谢物分析为 1TC 模型提供了输入函数,作为动力学参数值的黄金标准。应用 SRTM、SRTM 耦合(SRTMC)和 SRTM2 估计值来估算[公式:见正文](参考:CS)和 DVRCER(参考:CER)值。对于 SRTM2,[公式:见正文]的总体平均值是根据应用于参考区域的 1TC 模型确定的。此外,还计算了测试-重测变异性和最短扫描时间:CS 和 CER 的 1TC k2(1/min)值分别为 0.031 ± 0.004 和 0.021 ± 0.002。虽然 SRTMC[计算公式:见正文]远高于 1TC [计算公式:见正文],但由于 k2 和[计算公式:见正文]估算存在类似偏差,SRTMC 在各区域平均低估了 BPND(参考:CS)和 DVRCER,分别低估了 3%和 1%。SRTM 平均低估了 3%的 BPND(参考:CS),但以 CER 作为参考区域,SRTM 的估算不稳定,DVRCER 的低估因区域而异(平均 10%)。使用人口平均值[公式:见正文],SRTM2 BPND 和 DVRCER 与 1TC 估计值的一致性最好:我们的研究结果支持使用 SRTM2 中的[公式:见正文]人口值和[18F]SynVesT-1 来估算[公式:见正文]或 DVRCER,无论参考区域如何选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
15.60
自引率
9.90%
发文量
392
审稿时长
3 months
期刊介绍: The European Journal of Nuclear Medicine and Molecular Imaging serves as a platform for the exchange of clinical and scientific information within nuclear medicine and related professions. It welcomes international submissions from professionals involved in the functional, metabolic, and molecular investigation of diseases. The journal's coverage spans physics, dosimetry, radiation biology, radiochemistry, and pharmacy, providing high-quality peer review by experts in the field. Known for highly cited and downloaded articles, it ensures global visibility for research work and is part of the EJNMMI journal family.
期刊最新文献
Joint EANM/EANO/RANO/SNMMI practice guideline/procedure standard for PET imaging of brain metastases: version 1.0 Nuclear cardiology a solid pillar in the new chronic coronary syndromes ESC guidelines FAPI PET for monitoring of rheumatological treatment in multifocal peritoneal nodular fibrosis: a case study [18F]F-FAPI-42 PET dynamic imaging characteristics and multiparametric quantification of lung cancer: an exploratory study using uEXPLORER PET/CT Mapping the knowledge landscape of the PET/MR domain: a multidimensional bibliometric analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1