Tainá Larissa Lubschinski, Luiz Antonio Escorteganha Pollo, Paula Giarola Fragoso de Oliveira, Luigi Arruda Nardino, Eduarda Talita Bramorski Mohr, Ziliani da Silva Buss, Louis Pergaud Sandjo, Maique Weber Biavatti, Felipe Perozzo Daltoé, Eduardo Monguilhott Dalmarco
{"title":"Preclinical evidence of the anti-inflammatory effect and toxicological safety of aryl-cyclohexanone in vivo.","authors":"Tainá Larissa Lubschinski, Luiz Antonio Escorteganha Pollo, Paula Giarola Fragoso de Oliveira, Luigi Arruda Nardino, Eduarda Talita Bramorski Mohr, Ziliani da Silva Buss, Louis Pergaud Sandjo, Maique Weber Biavatti, Felipe Perozzo Daltoé, Eduardo Monguilhott Dalmarco","doi":"10.1111/fcp.13035","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Respiratory distress syndrome is a complex inflammatory condition defined by the presence of acute hypoxemia and cellular infiltration with diffuse alveolar injury following a tissue injury, such as acute lung injury. The inflammatory process involved in this pathology is a defense mechanism of the body against infectious agents and/or tissue injuries. However, when the condition is not reversed, it becomes a significant cause of tissue damage, sometimes leading to loss of function of the affected organ. Therefore, it is essential to understand the mechanisms underlying inflammation, as well as the development of new therapeutic agents that reduce inflammatory damage in these cases. Aryl-cyclohexanone derivatives have previously shown significant anti-inflammatory activity linked to an immunomodulatory capacity in vitro and may be good candidates for therapies in which inflammation plays a central role.</p><p><strong>Methods: </strong>Was evaluated the anti-inflammatory capacity of a synthesized molecule aryl-cyclohexanone in the murine model of lipopolysaccharide (LPS)-induced acute lung injury. The assessment of acute oral toxicity follows the Organization for Economic Co-operation and Development (OECD) guideline 423.</p><p><strong>Results: </strong>The results demonstrated that the studied molecule protects against LPS-induced inflammation. We observed a decrease in the migration of total and differential leukocytes to the bronchoalveolar lavage fluid (BALF), in addition to a reduction in exudation, myeloperoxidase (MPO) activity, nitric oxide metabolites, and the secretion of pro-inflammatory cytokines (alpha tumor necrosis factors [TNF-α], interleukin-6 [IL-6], interferon-gamma [IFN-γ], and monocyte chemoattractant protein-1 [MCP-1]). Finally, aryl cyclohexanone did not show signs of acute oral toxicity (OECD 423).</p><p><strong>Conclusions: </strong>The results prove our hypothesis that aryl-cyclohexanone is a promising molecule for developing a new, safe anti-inflammatory drug.</p>","PeriodicalId":12657,"journal":{"name":"Fundamental & Clinical Pharmacology","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamental & Clinical Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/fcp.13035","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Respiratory distress syndrome is a complex inflammatory condition defined by the presence of acute hypoxemia and cellular infiltration with diffuse alveolar injury following a tissue injury, such as acute lung injury. The inflammatory process involved in this pathology is a defense mechanism of the body against infectious agents and/or tissue injuries. However, when the condition is not reversed, it becomes a significant cause of tissue damage, sometimes leading to loss of function of the affected organ. Therefore, it is essential to understand the mechanisms underlying inflammation, as well as the development of new therapeutic agents that reduce inflammatory damage in these cases. Aryl-cyclohexanone derivatives have previously shown significant anti-inflammatory activity linked to an immunomodulatory capacity in vitro and may be good candidates for therapies in which inflammation plays a central role.
Methods: Was evaluated the anti-inflammatory capacity of a synthesized molecule aryl-cyclohexanone in the murine model of lipopolysaccharide (LPS)-induced acute lung injury. The assessment of acute oral toxicity follows the Organization for Economic Co-operation and Development (OECD) guideline 423.
Results: The results demonstrated that the studied molecule protects against LPS-induced inflammation. We observed a decrease in the migration of total and differential leukocytes to the bronchoalveolar lavage fluid (BALF), in addition to a reduction in exudation, myeloperoxidase (MPO) activity, nitric oxide metabolites, and the secretion of pro-inflammatory cytokines (alpha tumor necrosis factors [TNF-α], interleukin-6 [IL-6], interferon-gamma [IFN-γ], and monocyte chemoattractant protein-1 [MCP-1]). Finally, aryl cyclohexanone did not show signs of acute oral toxicity (OECD 423).
Conclusions: The results prove our hypothesis that aryl-cyclohexanone is a promising molecule for developing a new, safe anti-inflammatory drug.
期刊介绍:
Fundamental & Clinical Pharmacology publishes reports describing important and novel developments in fundamental as well as clinical research relevant to drug therapy. Original articles, short communications and reviews are published on all aspects of experimental and clinical pharmacology including:
Antimicrobial, Antiviral Agents
Autonomic Pharmacology
Cardiovascular Pharmacology
Cellular Pharmacology
Clinical Trials
Endocrinopharmacology
Gene Therapy
Inflammation, Immunopharmacology
Lipids, Atherosclerosis
Liver and G-I Tract Pharmacology
Metabolism, Pharmacokinetics
Neuropharmacology
Neuropsychopharmacology
Oncopharmacology
Pediatric Pharmacology Development
Pharmacoeconomics
Pharmacoepidemiology
Pharmacogenetics, Pharmacogenomics
Pharmacovigilance
Pulmonary Pharmacology
Receptors, Signal Transduction
Renal Pharmacology
Thrombosis and Hemostasis
Toxicopharmacology
Clinical research, including clinical studies and clinical trials, may cover disciplines such as pharmacokinetics, pharmacodynamics, pharmacovigilance, pharmacoepidemiology, pharmacogenomics and pharmacoeconomics. Basic research articles from fields such as physiology and molecular biology which contribute to an understanding of drug therapy are also welcomed.