Identification and Characterization of an R-M System in Paracoccus denitrifican DYTN-1 to Improve the Plasmid Conjugation Transfer Efficiency.

IF 2.5 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal of microbiology and biotechnology Pub Date : 2024-09-28 Epub Date: 2024-07-26 DOI:10.4014/jmb.2402.02041
Yunpeng Shi, Wenyan Cao, Zhiping Zheng, Sha Xu, Lijuan Chai, Shenghu Zhou, Yu Deng
{"title":"Identification and Characterization of an R-M System in <i>Paracoccus denitrifican</i> DYTN-1 to Improve the Plasmid Conjugation Transfer Efficiency.","authors":"Yunpeng Shi, Wenyan Cao, Zhiping Zheng, Sha Xu, Lijuan Chai, Shenghu Zhou, Yu Deng","doi":"10.4014/jmb.2402.02041","DOIUrl":null,"url":null,"abstract":"<p><p><i>Paracoccus denitrificans</i> has been identified as a representative strain with heterotrophic nitrification-aerobic denitrification capabilities (HN-AD), and demonstrates strong denitrification proficiency. Previously, we isolated the DYTN-1 strain from activated sludge, and it has showcased remarkable nitrogen removal abilities and genetic editability, which positions <i>P. denitrificans</i> DYTN-1 as a promising chassis cell for synthetic biology engineering, with versatile pollutant degradation capabilities. However, the strain's low stability in plasmid conjugation transfer efficiency (PCTE) hampers gene editing efficacy, and is attributed to its restriction modification system (R-M system). To overcome this limitation, we characterized the R-M system in <i>P. denitrificans</i> DYTN-1 and identified a DNA endonuclease and 13 DNA methylases, with the DNA endonuclease identified as HNH endonuclease. Subsequently, we developed a plasmid artificial modification approach to enhance conjugation transfer efficiency, which resulted in a remarkable 44-fold improvement in single colony production. This was accompanied by an increase in the frequency of positive colonies from 33.3% to 100%. Simultaneously, we cloned, expressed, and characterized the speculative HNH endonuclease capable of degrading unmethylated DNA at 30°C without specific cutting site preference. Notably, the impact of DNA methylase M9 modification on the plasmid was discovered, significantly impeding the cutting efficiency of the HNH endonuclease. This revelation unveils a novel R-M system in <i>P. denitrificans</i> and sheds light on protective mechanisms employed against exogenous DNA invasion. These findings pave the way for future engineering endeavors aimed at enhancing the DNA editability of <i>P. denitrificans</i>.</p>","PeriodicalId":16481,"journal":{"name":"Journal of microbiology and biotechnology","volume":"34 9","pages":"1826-1835"},"PeriodicalIF":2.5000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11473606/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microbiology and biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4014/jmb.2402.02041","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/26 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Paracoccus denitrificans has been identified as a representative strain with heterotrophic nitrification-aerobic denitrification capabilities (HN-AD), and demonstrates strong denitrification proficiency. Previously, we isolated the DYTN-1 strain from activated sludge, and it has showcased remarkable nitrogen removal abilities and genetic editability, which positions P. denitrificans DYTN-1 as a promising chassis cell for synthetic biology engineering, with versatile pollutant degradation capabilities. However, the strain's low stability in plasmid conjugation transfer efficiency (PCTE) hampers gene editing efficacy, and is attributed to its restriction modification system (R-M system). To overcome this limitation, we characterized the R-M system in P. denitrificans DYTN-1 and identified a DNA endonuclease and 13 DNA methylases, with the DNA endonuclease identified as HNH endonuclease. Subsequently, we developed a plasmid artificial modification approach to enhance conjugation transfer efficiency, which resulted in a remarkable 44-fold improvement in single colony production. This was accompanied by an increase in the frequency of positive colonies from 33.3% to 100%. Simultaneously, we cloned, expressed, and characterized the speculative HNH endonuclease capable of degrading unmethylated DNA at 30°C without specific cutting site preference. Notably, the impact of DNA methylase M9 modification on the plasmid was discovered, significantly impeding the cutting efficiency of the HNH endonuclease. This revelation unveils a novel R-M system in P. denitrificans and sheds light on protective mechanisms employed against exogenous DNA invasion. These findings pave the way for future engineering endeavors aimed at enhancing the DNA editability of P. denitrificans.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
鉴定和表征反硝化细菌 DYTN-1 中的 R-M 系统以提高质粒共轭转移效率
反硝化副球菌(Paracoccus denitrificans)已被确定为具有异养硝化-好氧反硝化能力(HN-AD)的代表性菌株,并表现出很强的反硝化能力。此前,我们从活性污泥中分离出了 DYTN-1 菌株,该菌株具有显著的脱氮能力和遗传编辑能力,这使得 P. denitrificans DYTN-1 成为一种具有多功能污染物降解能力的合成生物学工程底盘细胞。然而,该菌株的限制性修饰系统(R-M 系统)导致其质粒连接转移效率(PCTE)稳定性较低,影响了基因编辑的效果。为了克服这一限制,我们对脱硝杆菌 DYTN-1 的 R-M 系统进行了鉴定,发现了一种 DNA 内切酶和 13 种 DNA 甲基化酶,其中 DNA 内切酶被鉴定为 HNH 内切酶。随后,我们开发了一种质粒人工修饰方法来提高接合转移效率,结果单菌落产量显著提高了 44 倍。同时,阳性菌落的频率也从 33.3% 提高到了 100%。与此同时,我们克隆、表达并鉴定了推测的 HNH 内切酶,它能够在 30°C 下降解未甲基化的 DNA,而没有特定的切割位点偏好。值得注意的是,我们发现 DNA 甲基化酶 M9 修饰对质粒的影响极大地阻碍了 HNH 内切酶的切割效率。这一发现揭示了脱硝杆菌中一种新型的 R-M 系统,并揭示了防止外源 DNA 入侵的保护机制。这些发现为未来旨在提高变硝酸梭菌 DNA 可编辑性的工程努力铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of microbiology and biotechnology
Journal of microbiology and biotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-MICROBIOLOGY
CiteScore
5.50
自引率
3.60%
发文量
151
审稿时长
2 months
期刊介绍: The Journal of Microbiology and Biotechnology (JMB) is a monthly international journal devoted to the advancement and dissemination of scientific knowledge pertaining to microbiology, biotechnology, and related academic disciplines. It covers various scientific and technological aspects of Molecular and Cellular Microbiology, Environmental Microbiology and Biotechnology, Food Biotechnology, and Biotechnology and Bioengineering (subcategories are listed below). Launched in March 1991, the JMB is published by the Korean Society for Microbiology and Biotechnology (KMB) and distributed worldwide.
期刊最新文献
Loss in Pluripotency Markers in Mesenchymal Stem Cells upon Infection with Chlamydia trachomatis. Production of Succinic Acid by Metabolically Engineered Actinobacillus succinogenes from Lignocellulosic Hydrolysate Derived from Barley Straw. Conductive Bio-Harvesting Tonic (CBT) with an Anti-Dandruff Effect Enhances Hair Growth by Utilizing Naturally Generated Electric Energy during Human Activities. Novel gnd_v2 Fusion Tag and Engineered TEV Protease Enable Efficient Production of Brazzein. Bacterial Pigments as a Promising Alternative to Synthetic Colorants: From Fundamentals to Applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1