Empagliflozin-activated AMPK elicits neuroprotective properties in reserpine-induced depression via regulating dynamics of hippocampal autophagy/inflammation and PKCζ-mediated neurogenesis.
Radwa N Muhammad, Mohammed A Albahairy, Mai A Abd El Fattah, Weam W Ibrahim
{"title":"Empagliflozin-activated AMPK elicits neuroprotective properties in reserpine-induced depression via regulating dynamics of hippocampal autophagy/inflammation and PKCζ-mediated neurogenesis.","authors":"Radwa N Muhammad, Mohammed A Albahairy, Mai A Abd El Fattah, Weam W Ibrahim","doi":"10.1007/s00213-024-06663-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Rationale: </strong>Major depression has been an area of extensive research during the last decades, for it represents a leading cause of disability and suicide. The stark rise of depression rates influenced by life stressors, economic threats, pandemic era, and resistance to classical treatments, has made the disorder rather challenging. Adult hippocampal neurogenesis and plasticity are particularly sensitive to the dynamic interplay between autophagy and inflammation. In fact, the intricate balance between the two processes contributes to neuronal homeostasis and survival.</p><p><strong>Objectives: </strong>Having demonstrated promising potentials in AMPK activation, a major metabolic sensor and autophagy regulator, empagliflozin (Empa) was investigated for possible antidepressant properties in the reserpine rat model of depression.</p><p><strong>Results: </strong>While the reserpine protocol elicited behavioral, biochemical, and histopathological changes relevant to depression, Empa outstandingly hindered these pathological perturbations. Importantly, hippocampal autophagic response markedly declined with reserpine which disrupted the AMPK/mTOR/Beclin1/LC3B machinery and, conversely, neuro-inflammation prevailed under the influence of the NLRP3 inflammasome together with oxidative/nitrative stress. Consequently, AMPK-mediated neurotrophins secretion obviously deteriorated through PKCζ/NF-κB/BDNF/CREB signal restriction. Empa restored hippocampal monoamines and autophagy/inflammation balance, driven by AMPK activation. By promoting the atypical PKCζ phosphorylation (Thr403) which subsequently phosphorylates NF-κB at Ser311, AMPK successfully reinforced BDNF/CREB signal and hippocampal neuroplasticity. The latter finding was supported by hippocampal CA3 toluidine blue staining to reveal intact neurons.</p><p><strong>Conclusion: </strong>The current study highlights an interesting role for Empa as a regulator of autophagic and inflammatory responses in the pathology of depression. The study also pinpoints an unusual contribution for NF-κB in neurotrophins secretion via AMPK/PKCζ/NF-κB/BDNF/CREB signal transduction. Accordingly, Empa can have special benefits in diabetic patients with depressive symptoms.</p><p><strong>Limitations: </strong>The influence of p-NF-κB (Ser311) on NLRP3 inflammasome assembly and activation has not been investigated, which can represent an interesting point for further research.</p>","PeriodicalId":20783,"journal":{"name":"Psychopharmacology","volume":" ","pages":"2565-2584"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11569022/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychopharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00213-024-06663-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/19 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Rationale: Major depression has been an area of extensive research during the last decades, for it represents a leading cause of disability and suicide. The stark rise of depression rates influenced by life stressors, economic threats, pandemic era, and resistance to classical treatments, has made the disorder rather challenging. Adult hippocampal neurogenesis and plasticity are particularly sensitive to the dynamic interplay between autophagy and inflammation. In fact, the intricate balance between the two processes contributes to neuronal homeostasis and survival.
Objectives: Having demonstrated promising potentials in AMPK activation, a major metabolic sensor and autophagy regulator, empagliflozin (Empa) was investigated for possible antidepressant properties in the reserpine rat model of depression.
Results: While the reserpine protocol elicited behavioral, biochemical, and histopathological changes relevant to depression, Empa outstandingly hindered these pathological perturbations. Importantly, hippocampal autophagic response markedly declined with reserpine which disrupted the AMPK/mTOR/Beclin1/LC3B machinery and, conversely, neuro-inflammation prevailed under the influence of the NLRP3 inflammasome together with oxidative/nitrative stress. Consequently, AMPK-mediated neurotrophins secretion obviously deteriorated through PKCζ/NF-κB/BDNF/CREB signal restriction. Empa restored hippocampal monoamines and autophagy/inflammation balance, driven by AMPK activation. By promoting the atypical PKCζ phosphorylation (Thr403) which subsequently phosphorylates NF-κB at Ser311, AMPK successfully reinforced BDNF/CREB signal and hippocampal neuroplasticity. The latter finding was supported by hippocampal CA3 toluidine blue staining to reveal intact neurons.
Conclusion: The current study highlights an interesting role for Empa as a regulator of autophagic and inflammatory responses in the pathology of depression. The study also pinpoints an unusual contribution for NF-κB in neurotrophins secretion via AMPK/PKCζ/NF-κB/BDNF/CREB signal transduction. Accordingly, Empa can have special benefits in diabetic patients with depressive symptoms.
Limitations: The influence of p-NF-κB (Ser311) on NLRP3 inflammasome assembly and activation has not been investigated, which can represent an interesting point for further research.
期刊介绍:
Official Journal of the European Behavioural Pharmacology Society (EBPS)
Psychopharmacology is an international journal that covers the broad topic of elucidating mechanisms by which drugs affect behavior. The scope of the journal encompasses the following fields:
Human Psychopharmacology: Experimental
This section includes manuscripts describing the effects of drugs on mood, behavior, cognition and physiology in humans. The journal encourages submissions that involve brain imaging, genetics, neuroendocrinology, and developmental topics. Usually manuscripts in this section describe studies conducted under controlled conditions, but occasionally descriptive or observational studies are also considered.
Human Psychopharmacology: Clinical and Translational
This section comprises studies addressing the broad intersection of drugs and psychiatric illness. This includes not only clinical trials and studies of drug usage and metabolism, drug surveillance, and pharmacoepidemiology, but also work utilizing the entire range of clinically relevant methodologies, including neuroimaging, pharmacogenetics, cognitive science, biomarkers, and others. Work directed toward the translation of preclinical to clinical knowledge is especially encouraged. The key feature of submissions to this section is that they involve a focus on clinical aspects.
Preclinical psychopharmacology: Behavioral and Neural
This section considers reports on the effects of compounds with defined chemical structures on any aspect of behavior, in particular when correlated with neurochemical effects, in species other than humans. Manuscripts containing neuroscientific techniques in combination with behavior are welcome. We encourage reports of studies that provide insight into the mechanisms of drug action, at the behavioral and molecular levels.
Preclinical Psychopharmacology: Translational
This section considers manuscripts that enhance the confidence in a central mechanism that could be of therapeutic value for psychiatric or neurological patients, using disease-relevant preclinical models and tests, or that report on preclinical manipulations and challenges that have the potential to be translated to the clinic. Studies aiming at the refinement of preclinical models based upon clinical findings (back-translation) will also be considered. The journal particularly encourages submissions that integrate measures of target tissue exposure, activity on the molecular target and/or modulation of the targeted biochemical pathways.
Preclinical Psychopharmacology: Molecular, Genetic and Epigenetic
This section focuses on the molecular and cellular actions of neuropharmacological agents / drugs, and the identification / validation of drug targets affecting the CNS in health and disease. We particularly encourage studies that provide insight into the mechanisms of drug action at the molecular level. Manuscripts containing evidence for genetic or epigenetic effects on neurochemistry or behavior are welcome.