Maxim Fikuart, Benno Bullert, Sven Y Vetter, Jochen Franke, Paul A Gruetzner, Benedict Swartman
{"title":"Effect of the cone-beam CT acquisition trajectory on image quality in spine surgery: experimental cadaver study.","authors":"Maxim Fikuart, Benno Bullert, Sven Y Vetter, Jochen Franke, Paul A Gruetzner, Benedict Swartman","doi":"10.1016/j.spinee.2024.08.016","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Intraoperative 3D imaging with cone-beam CT (CBCT) improves assessment of implant position and reduces complications in spine surgery. It is also used for image-guided surgical techniques, resulting in improved quality of care. However, in some cases, metal artifacts can reduce image quality and make it difficult to assess pedicle screw position and reduction.</p><p><strong>Purpose: </strong>The objective of this study was to investigate whether a change in CBCT acquisition trajectory in relation to pedicle screw position during dorsal instrumentation can reduce metal artifacts and consequently improve image quality and clinical assessability.</p><p><strong>Study design: </strong>Experimental cadaver study.</p><p><strong>Methods: </strong>A human cadaver was instrumented with pedicle screws in the thoracic and lumbar spine region (Th11 to L5). Then, the acquisition trajectory of the CBCT (Cios Spin, Siemens, Germany) to the pedicle screws was systematically changed in 5° steps in angulation (-30° to +30°) and swivel (-25° to +25°). Subsequently, radiological evaluation was performed by 3 blinded, qualified raters on image quality using 9 questions (including anatomical structures, implant position, appearance of artifacts) with a score (1-5 points). For statistical evaluation, the image quality of the different acquisition trajectories was compared to the standard acquisition trajectory and checked for significant differences.</p><p><strong>Results: </strong>The angulated acquisition trajectory significantly increased the score for subjective image quality (p<.001) as well as the clinical assessability of pedicle screw position (p<.001) with particularly strong effects on subjective image quality in the vertebral pedicle region (d=1.61). Swivel of the acquisition trajectory significantly improved all queried domains of subjective image quality (p<.001) as well as clinical assessability of pedicle screw position (p<.001).</p><p><strong>Conclusions: </strong>In this cadaver study, the angulation as well as the swivel of the acquisition trajectory led to a significantly improved image quality in intraoperative 3D imaging (CBCT) with a constant isocenter. The data show that maximizing the angulation/swivel angle towards 30°/25° provides the best tested subjective image quality and enhances clinical assessability. Therefore, a correct adjustment of the acquisition trajectory can help to make intraoperative revision decisions more reliably.</p><p><strong>Clinical significance: </strong>The knowledge of enhanced image quality by changing the acquisition trajectory in intraoperative 3D imaging can be used for the assessment of critical screw positions in spine surgery. The implementation of this knowledge requires only a minor change of the current intraoperative imaging workflow without additional technical equipment and could further reduce the need for revision surgery.</p>","PeriodicalId":49484,"journal":{"name":"Spine Journal","volume":" ","pages":"154-164"},"PeriodicalIF":4.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spine Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.spinee.2024.08.016","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Intraoperative 3D imaging with cone-beam CT (CBCT) improves assessment of implant position and reduces complications in spine surgery. It is also used for image-guided surgical techniques, resulting in improved quality of care. However, in some cases, metal artifacts can reduce image quality and make it difficult to assess pedicle screw position and reduction.
Purpose: The objective of this study was to investigate whether a change in CBCT acquisition trajectory in relation to pedicle screw position during dorsal instrumentation can reduce metal artifacts and consequently improve image quality and clinical assessability.
Study design: Experimental cadaver study.
Methods: A human cadaver was instrumented with pedicle screws in the thoracic and lumbar spine region (Th11 to L5). Then, the acquisition trajectory of the CBCT (Cios Spin, Siemens, Germany) to the pedicle screws was systematically changed in 5° steps in angulation (-30° to +30°) and swivel (-25° to +25°). Subsequently, radiological evaluation was performed by 3 blinded, qualified raters on image quality using 9 questions (including anatomical structures, implant position, appearance of artifacts) with a score (1-5 points). For statistical evaluation, the image quality of the different acquisition trajectories was compared to the standard acquisition trajectory and checked for significant differences.
Results: The angulated acquisition trajectory significantly increased the score for subjective image quality (p<.001) as well as the clinical assessability of pedicle screw position (p<.001) with particularly strong effects on subjective image quality in the vertebral pedicle region (d=1.61). Swivel of the acquisition trajectory significantly improved all queried domains of subjective image quality (p<.001) as well as clinical assessability of pedicle screw position (p<.001).
Conclusions: In this cadaver study, the angulation as well as the swivel of the acquisition trajectory led to a significantly improved image quality in intraoperative 3D imaging (CBCT) with a constant isocenter. The data show that maximizing the angulation/swivel angle towards 30°/25° provides the best tested subjective image quality and enhances clinical assessability. Therefore, a correct adjustment of the acquisition trajectory can help to make intraoperative revision decisions more reliably.
Clinical significance: The knowledge of enhanced image quality by changing the acquisition trajectory in intraoperative 3D imaging can be used for the assessment of critical screw positions in spine surgery. The implementation of this knowledge requires only a minor change of the current intraoperative imaging workflow without additional technical equipment and could further reduce the need for revision surgery.
期刊介绍:
The Spine Journal, the official journal of the North American Spine Society, is an international and multidisciplinary journal that publishes original, peer-reviewed articles on research and treatment related to the spine and spine care, including basic science and clinical investigations. It is a condition of publication that manuscripts submitted to The Spine Journal have not been published, and will not be simultaneously submitted or published elsewhere. The Spine Journal also publishes major reviews of specific topics by acknowledged authorities, technical notes, teaching editorials, and other special features, Letters to the Editor-in-Chief are encouraged.