{"title":"Automated quantification of SARS-CoV-2 pneumonia with large vision model knowledge adaptation","authors":"Zhaohui Liang, Zhiyun Xue, Sivaramakrishnan Rajaraman, Sameer Antani","doi":"10.1016/j.nmni.2024.101457","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Large vision models (LVM) pretrained by large datasets have demonstrated their enormous capacity to understand visual patterns and capture semantic information from images. We proposed a novel method of knowledge domain adaptation with pretrained LVM for a low-cost artificial intelligence (AI) model to quantify the severity of SARS-CoV-2 pneumonia based on frontal chest X-ray (CXR) images.</p></div><div><h3>Methods</h3><p>Our method used the pretrained LVMs as the primary feature extractor and self-supervised contrastive learning for domain adaptation. An encoder with a 2048-dimensional feature vector output was first trained by self-supervised learning for knowledge domain adaptation. Then a multi-layer perceptron (MLP) was trained for the final severity prediction. A dataset with 2599 CXR images was used for model training and evaluation.</p></div><div><h3>Results</h3><p>The model based on the pretrained vision transformer (ViT) and self-supervised learning achieved the best performance in cross validation, with mean squared error (MSE) of 23.83 (95 % CI 22.67–25.00) and mean absolute error (MAE) of 3.64 (95 % CI 3.54–3.73). Its prediction correlation has the <span><math><mrow><msup><mi>R</mi><mn>2</mn></msup></mrow></math></span> of 0.81 (95 % CI 0.79–0.82) and Spearman ρ of 0.80 (95 % CI 0.77–0.81), which are comparable to the current state-of-the-art (SOTA) methods trained by much larger CXR datasets.</p></div><div><h3>Conclusion</h3><p>The proposed new method has achieved the SOTA performance to quantify the severity of SARS-CoV-2 pneumonia at a significantly lower cost. The method can be extended to other infectious disease detection or quantification to expedite the application of AI in medical research.</p></div>","PeriodicalId":38074,"journal":{"name":"New Microbes and New Infections","volume":"62 ","pages":"Article 101457"},"PeriodicalIF":2.9000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2052297524002415/pdfft?md5=89933a142f91d984f36351709bf18673&pid=1-s2.0-S2052297524002415-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Microbes and New Infections","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2052297524002415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Large vision models (LVM) pretrained by large datasets have demonstrated their enormous capacity to understand visual patterns and capture semantic information from images. We proposed a novel method of knowledge domain adaptation with pretrained LVM for a low-cost artificial intelligence (AI) model to quantify the severity of SARS-CoV-2 pneumonia based on frontal chest X-ray (CXR) images.
Methods
Our method used the pretrained LVMs as the primary feature extractor and self-supervised contrastive learning for domain adaptation. An encoder with a 2048-dimensional feature vector output was first trained by self-supervised learning for knowledge domain adaptation. Then a multi-layer perceptron (MLP) was trained for the final severity prediction. A dataset with 2599 CXR images was used for model training and evaluation.
Results
The model based on the pretrained vision transformer (ViT) and self-supervised learning achieved the best performance in cross validation, with mean squared error (MSE) of 23.83 (95 % CI 22.67–25.00) and mean absolute error (MAE) of 3.64 (95 % CI 3.54–3.73). Its prediction correlation has the of 0.81 (95 % CI 0.79–0.82) and Spearman ρ of 0.80 (95 % CI 0.77–0.81), which are comparable to the current state-of-the-art (SOTA) methods trained by much larger CXR datasets.
Conclusion
The proposed new method has achieved the SOTA performance to quantify the severity of SARS-CoV-2 pneumonia at a significantly lower cost. The method can be extended to other infectious disease detection or quantification to expedite the application of AI in medical research.