A multi-source heterogeneous data fusion method for intelligent systems in the Internet of Things

Rongrong Sun , Yuemei Ren
{"title":"A multi-source heterogeneous data fusion method for intelligent systems in the Internet of Things","authors":"Rongrong Sun ,&nbsp;Yuemei Ren","doi":"10.1016/j.iswa.2024.200424","DOIUrl":null,"url":null,"abstract":"<div><p>The advent of the Internet of Things (IoT) has revolutionized the field of intelligent system development by providing an extensive amount of data from IoT devices, essential for the management of these systems and the creation of innovative services. This data covers various aspects, including creation at the physical layer, transmission through the network layer, and processing within the application layer. This study presents a groundbreaking approach to amalgamating multi-source and varied data within intelligent systems leveraging IoT technology. Our approach seeks to optimize the integration of diverse datasets by examining the correlations between different data types using a novel mixed information gain strategy, leading to effective data fusion. It capitalizes on the computational and storage capacities of systems for seamless integration and augments the analysis of information, thereby improving the useability of data in intelligent systems. Simulation tests confirm the superiority of our method, demonstrating a remarkable improvement in performance in the fusion of dynamic, multi-source heterogeneous data compared to conventional techniques.</p></div>","PeriodicalId":100684,"journal":{"name":"Intelligent Systems with Applications","volume":"23 ","pages":"Article 200424"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266730532400098X/pdfft?md5=2b7b7b15f5cc697370e951edb65b1983&pid=1-s2.0-S266730532400098X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Systems with Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266730532400098X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The advent of the Internet of Things (IoT) has revolutionized the field of intelligent system development by providing an extensive amount of data from IoT devices, essential for the management of these systems and the creation of innovative services. This data covers various aspects, including creation at the physical layer, transmission through the network layer, and processing within the application layer. This study presents a groundbreaking approach to amalgamating multi-source and varied data within intelligent systems leveraging IoT technology. Our approach seeks to optimize the integration of diverse datasets by examining the correlations between different data types using a novel mixed information gain strategy, leading to effective data fusion. It capitalizes on the computational and storage capacities of systems for seamless integration and augments the analysis of information, thereby improving the useability of data in intelligent systems. Simulation tests confirm the superiority of our method, demonstrating a remarkable improvement in performance in the fusion of dynamic, multi-source heterogeneous data compared to conventional techniques.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
物联网智能系统的多源异构数据融合方法
物联网(IoT)的出现彻底改变了智能系统开发领域,因为它提供了大量来自物联网设备的数据,这些数据对这些系统的管理和创新服务的创建至关重要。这些数据涉及多个方面,包括在物理层创建、通过网络层传输以及在应用层处理。本研究提出了一种开创性的方法,利用物联网技术在智能系统中整合多源、多样的数据。我们的方法旨在通过使用新颖的混合信息增益策略来检查不同数据类型之间的相关性,从而优化不同数据集的整合,实现有效的数据融合。它利用系统的计算和存储能力进行无缝整合,并增强信息分析,从而提高数据在智能系统中的可用性。仿真测试证实了我们方法的优越性,与传统技术相比,我们在动态多源异构数据融合方面的性能有了显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.60
自引率
0.00%
发文量
0
期刊最新文献
MapReduce teaching learning based optimization algorithm for solving CEC-2013 LSGO benchmark Testsuit Intelligent gear decision method for vehicle automatic transmission system based on data mining Design and implementation of EventsKG for situational monitoring and security intelligence in India: An open-source intelligence gathering approach Ideological orientation and extremism detection in online social networking sites: A systematic review Multi-objective optimization of power networks integrating electric vehicles and wind energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1