Regulatory axis of circular RNA DTNB, microRNA-485-5p, and myeloid cell leukemia 1 attenuates inflammation and apoptosis in caerulein-treated AR42J cells
{"title":"Regulatory axis of circular RNA DTNB, microRNA-485-5p, and myeloid cell leukemia 1 attenuates inflammation and apoptosis in caerulein-treated AR42J cells","authors":"Xiao Tian, Yun Zhang, MiaoMiao Peng, YuXi Hou","doi":"10.1007/s10142-024-01411-1","DOIUrl":null,"url":null,"abstract":"<div><p>Acute pancreatitis (AP) is an inflammatory disease of the pancreas and the main cause of hospital admissions for gastrointestinal diseases. Here, the work studied the circular RNA DTNB/microRNA-485-5p/MCL1 axis in AP and hoped to unravel the related mechanism. Caerulein exposure replicated an AP model in AR42J cells, and caerulein-mediated expression of circDTNB, miR-485-5p, and MCL1 was recorded. After exposure, cells were intervened with transfection plasmids and tested for LDH release, apoptosis, and inflammation. To determine the interwork of circDTNB, miR-485-5p, and MCL1, prediction results and verification experiments were conducted. Caerulein exposure reduced circDTNB and MCL1, while elevated miR-485-5p levels in AR42J cells. Upregulating circDTNB protected AR42J cells from caerulein-induced LDH cytotoxicity, apoptosis, and inflammation, but circDTNB upregulation-induced protections could be muffled by inhibiting MCL1. On the contrary, downregulating circDTNB further damaged AR42J cells under caerulein exposure, however, this phenomenon could be partially rescued after silencing miR-485-5p. miR-485-5p was mechanistically verified to be a target of circDTNB to mediate MCL1. Overall, the circDTNB/miR-485-5p/MCL1 axis protects inflammatory response and apoptosis in caerulein-exposed AR42J cells, promisingly identifying circDTNB as a novel molecule for AP treatment.</p></div>","PeriodicalId":574,"journal":{"name":"Functional & Integrative Genomics","volume":"24 5","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional & Integrative Genomics","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10142-024-01411-1","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Acute pancreatitis (AP) is an inflammatory disease of the pancreas and the main cause of hospital admissions for gastrointestinal diseases. Here, the work studied the circular RNA DTNB/microRNA-485-5p/MCL1 axis in AP and hoped to unravel the related mechanism. Caerulein exposure replicated an AP model in AR42J cells, and caerulein-mediated expression of circDTNB, miR-485-5p, and MCL1 was recorded. After exposure, cells were intervened with transfection plasmids and tested for LDH release, apoptosis, and inflammation. To determine the interwork of circDTNB, miR-485-5p, and MCL1, prediction results and verification experiments were conducted. Caerulein exposure reduced circDTNB and MCL1, while elevated miR-485-5p levels in AR42J cells. Upregulating circDTNB protected AR42J cells from caerulein-induced LDH cytotoxicity, apoptosis, and inflammation, but circDTNB upregulation-induced protections could be muffled by inhibiting MCL1. On the contrary, downregulating circDTNB further damaged AR42J cells under caerulein exposure, however, this phenomenon could be partially rescued after silencing miR-485-5p. miR-485-5p was mechanistically verified to be a target of circDTNB to mediate MCL1. Overall, the circDTNB/miR-485-5p/MCL1 axis protects inflammatory response and apoptosis in caerulein-exposed AR42J cells, promisingly identifying circDTNB as a novel molecule for AP treatment.
期刊介绍:
Functional & Integrative Genomics is devoted to large-scale studies of genomes and their functions, including systems analyses of biological processes. The journal will provide the research community an integrated platform where researchers can share, review and discuss their findings on important biological questions that will ultimately enable us to answer the fundamental question: How do genomes work?