Time of day affects MrgD-dependent modulation of cardiomyocyte contractility.

IF 5 2区 生物学 Q2 CELL BIOLOGY American journal of physiology. Cell physiology Pub Date : 2024-10-01 Epub Date: 2024-08-19 DOI:10.1152/ajpcell.00049.2024
André L L Monteiro, Marcos Eliezeck, Sérgio R A Scalzo, Mário Morais Silva, Bruno Sanches, Katyana K S Ferreira, Maristela O Poletini, Rodrigo A Peliciari-Garcia, Stêfany B A Cau, Robson A Souza Santos, Silvia Guatimosim
{"title":"Time of day affects MrgD-dependent modulation of cardiomyocyte contractility.","authors":"André L L Monteiro, Marcos Eliezeck, Sérgio R A Scalzo, Mário Morais Silva, Bruno Sanches, Katyana K S Ferreira, Maristela O Poletini, Rodrigo A Peliciari-Garcia, Stêfany B A Cau, Robson A Souza Santos, Silvia Guatimosim","doi":"10.1152/ajpcell.00049.2024","DOIUrl":null,"url":null,"abstract":"<p><p>The renin-angiotensin system (RAS) is composed of a series of peptides, receptors, and enzymes that play a pivotal role in maintaining cardiovascular homeostasis. Among the most important players in this system are the angiotensin-II and angiotensin-(1-7) peptides. Our group has recently demonstrated that alamandine (ALA), a peptide with structural and functional similarities to angiotensin-(1-7), interacts with cardiomyocytes, enhancing contractility via the Mas-related G protein-coupled receptor member D (MrgD). It is currently unknown whether this modulation varies along the distinct phases of the day. To address this issue, we assessed the ALA-induced contractility response of cardiomyocytes from mice at four Zeitgeber times (ZTs). At ZT2 (light phase), ALA enhanced cardiomyocyte shortening in an MrgD receptor-dependent manner, which was associated with nitric oxide (NO) production. At ZT14 (dark phase), ALA induced a negative modulation on the cardiomyocyte contraction. β-Alanine, an MrgD agonist, reproduced the time-of-day effects of ALA on myocyte shortening. <i>N</i><sup>G</sup>-nitro-l-arginine methyl ester, an NO synthase inhibitor, blocked the increase in fractional shortening induced by ALA at ZT2. No effect of ALA on myocyte shortening was observed at ZT8 and ZT20. Our results show that ALA/MrgD signaling in cardiomyocytes is subject to temporal modulation. This finding has significant implications for pharmacological approaches that combine chronotherapy for cardiac conditions triggered by disruption of circadian rhythms and hormonal signaling.<b>NEW & NOTEWORTHY</b> Alamandine, a member of the renin-angiotensin system, serves critical roles in cardioprotection, including the modulation of cardiomyocyte contractility. Whether this effect varies along the day is unknown. Our results provide evidence that alamandine via receptor MrgD exerts opposing actions on cardiomyocyte shortening, enhancing, or reducing contraction depending on the time of day. These findings may have significant implications for the development and effectiveness of future cardiac therapies.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":"C1143-C1149"},"PeriodicalIF":5.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Cell physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/ajpcell.00049.2024","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/19 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The renin-angiotensin system (RAS) is composed of a series of peptides, receptors, and enzymes that play a pivotal role in maintaining cardiovascular homeostasis. Among the most important players in this system are the angiotensin-II and angiotensin-(1-7) peptides. Our group has recently demonstrated that alamandine (ALA), a peptide with structural and functional similarities to angiotensin-(1-7), interacts with cardiomyocytes, enhancing contractility via the Mas-related G protein-coupled receptor member D (MrgD). It is currently unknown whether this modulation varies along the distinct phases of the day. To address this issue, we assessed the ALA-induced contractility response of cardiomyocytes from mice at four Zeitgeber times (ZTs). At ZT2 (light phase), ALA enhanced cardiomyocyte shortening in an MrgD receptor-dependent manner, which was associated with nitric oxide (NO) production. At ZT14 (dark phase), ALA induced a negative modulation on the cardiomyocyte contraction. β-Alanine, an MrgD agonist, reproduced the time-of-day effects of ALA on myocyte shortening. NG-nitro-l-arginine methyl ester, an NO synthase inhibitor, blocked the increase in fractional shortening induced by ALA at ZT2. No effect of ALA on myocyte shortening was observed at ZT8 and ZT20. Our results show that ALA/MrgD signaling in cardiomyocytes is subject to temporal modulation. This finding has significant implications for pharmacological approaches that combine chronotherapy for cardiac conditions triggered by disruption of circadian rhythms and hormonal signaling.NEW & NOTEWORTHY Alamandine, a member of the renin-angiotensin system, serves critical roles in cardioprotection, including the modulation of cardiomyocyte contractility. Whether this effect varies along the day is unknown. Our results provide evidence that alamandine via receptor MrgD exerts opposing actions on cardiomyocyte shortening, enhancing, or reducing contraction depending on the time of day. These findings may have significant implications for the development and effectiveness of future cardiac therapies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
时间对心肌细胞收缩力的调节具有依赖性。
肾素-血管紧张素系统(RAS)由一系列肽、受体和酶组成,在维持心血管平衡方面发挥着关键作用。该系统中最重要的角色是血管紧张素-II 和血管紧张素-(1-7)肽。我们的研究小组最近证明,阿拉曼丁(ALA)是一种在结构和功能上与血管紧张素-(1-7)相似的多肽,它能与心肌细胞相互作用,通过与 Mas 相关的 G 蛋白偶联受体成员 D(MrgD)增强收缩力。目前还不清楚这种调节作用是否会随着一天中不同阶段的变化而变化。为了解决这个问题,我们评估了 ALA 诱导的小鼠心肌细胞在四个 Zeitgeber 时间(ZTs)的收缩力反应。在 ZT2(光照阶段),ALA 以依赖于 MrgD 受体的方式增强了心肌细胞的缩短,这与 NO 的产生有关。在 ZT14(暗期),ALA 对心肌细胞收缩产生负向调节。MrgD激动剂β-丙氨酸再现了ALA对心肌细胞缩短的时间效应。氮氧化物合成酶抑制剂 L-NG-硝基精氨酸甲酯(L-NAME)阻断了 ALA 在 ZT2 诱导的缩短率增加。在 ZT 8 和 20 时,未观察到 ALA 对肌细胞缩短的影响。我们的研究结果表明,心肌细胞中的 ALA/MrgD 信号传导受时间调节。这一发现对结合时间疗法的药理方法具有重要意义,可治疗昼夜节律紊乱和激素信号转导引发的心脏疾病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.10
自引率
1.80%
发文量
252
审稿时长
1 months
期刊介绍: The American Journal of Physiology-Cell Physiology is dedicated to innovative approaches to the study of cell and molecular physiology. Contributions that use cellular and molecular approaches to shed light on mechanisms of physiological control at higher levels of organization also appear regularly. Manuscripts dealing with the structure and function of cell membranes, contractile systems, cellular organelles, and membrane channels, transporters, and pumps are encouraged. Studies dealing with integrated regulation of cellular function, including mechanisms of signal transduction, development, gene expression, cell-to-cell interactions, and the cell physiology of pathophysiological states, are also eagerly sought. Interdisciplinary studies that apply the approaches of biochemistry, biophysics, molecular biology, morphology, and immunology to the determination of new principles in cell physiology are especially welcome.
期刊最新文献
Animal models of haploinsufficiency revealed the isoform-specific role of GSK-3 in HFD-induced obesity and glucose intolerance. Hypoxia-induced TIMAP upregulation in endothelial cells and TIMAP-dependent tumor angiogenesis. Homeostatic regulation of brain activity: from endogenous mechanisms to homeostatic nanomachines. Innate players in Th2 and non-Th2 asthma: emerging roles for the epithelial cell, mast cell, and monocyte/macrophage network. Unlocking the mechanisms of muscle fatigue: insights from the Marion J. Siegman Award Lectures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1