{"title":"Harnessing the versatility of hydrazones through electrosynthetic oxidative transformations.","authors":"Aurélie Claraz","doi":"10.3762/bjoc.20.175","DOIUrl":null,"url":null,"abstract":"<p><p>Hydrazones are important structural motifs in organic synthesis, providing a useful molecular platform for the construction of valuable compounds. Electrooxidative transformations of hydrazones constitute an attractive opportunity to take advantage of the versatility of these reagents. By directly harnessing the electrical current to perform the oxidative process, a large panel of organic molecules can be accessed from readily available hydrazones under mild, safe and oxidant-free reaction conditions. This review presents a comprehensive overview of oxidative electrosynthetic transformations of hydrazones. It includes the construction of azacycles, the C(sp<sup>2</sup>)-H functionalization of aldehyde-derived hydrazones and the access to diazo compounds as either synthetic intermediates or products. A special attention is paid to the reaction mechanism with the aim to encourage further development in this field.</p>","PeriodicalId":8756,"journal":{"name":"Beilstein Journal of Organic Chemistry","volume":"20 ","pages":"1988-2004"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11331547/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Beilstein Journal of Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3762/bjoc.20.175","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrazones are important structural motifs in organic synthesis, providing a useful molecular platform for the construction of valuable compounds. Electrooxidative transformations of hydrazones constitute an attractive opportunity to take advantage of the versatility of these reagents. By directly harnessing the electrical current to perform the oxidative process, a large panel of organic molecules can be accessed from readily available hydrazones under mild, safe and oxidant-free reaction conditions. This review presents a comprehensive overview of oxidative electrosynthetic transformations of hydrazones. It includes the construction of azacycles, the C(sp2)-H functionalization of aldehyde-derived hydrazones and the access to diazo compounds as either synthetic intermediates or products. A special attention is paid to the reaction mechanism with the aim to encourage further development in this field.
期刊介绍:
The Beilstein Journal of Organic Chemistry is an international, peer-reviewed, Open Access journal. It provides a unique platform for rapid publication without any charges (free for author and reader) – Platinum Open Access. The content is freely accessible 365 days a year to any user worldwide. Articles are available online immediately upon publication and are publicly archived in all major repositories. In addition, it provides a platform for publishing thematic issues (theme-based collections of articles) on topical issues in organic chemistry.
The journal publishes high quality research and reviews in all areas of organic chemistry, including organic synthesis, organic reactions, natural product chemistry, structural investigations, supramolecular chemistry and chemical biology.